首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
物理学   6篇
  2022年   2篇
  2018年   2篇
  2016年   1篇
  2008年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
当今全球范围内有机食品行业发展迅速,体现出消费者对食品质量安全的重视。相比于普通鸡蛋,有机鸡蛋因严格的生产条件以及更高的营养价值生产成本更高、售价更贵。市面上所销售的有机鸡蛋虽取得了严格有机食品认证标识,但依旧不能阻止不法份子将普通鸡蛋冒充有机鸡蛋销售,从而谋取利润。这一行为不仅会损害有机鸡蛋生产商的利益,也降低了人们对有机食品的信任度,为此需要一种有效的对有机鸡蛋和普通鸡蛋无损鉴别方法。使用高光谱技术透射成像的方式,可以获取物质内部的信息,以有机鸡蛋和普通鸡蛋为试验对象,采集鸡蛋样本364~1 025 nm波长范围的高光谱图像数据,从采集到的数据中提取出鸡蛋蛋清和蛋黄感兴趣区域(ROI)的平均透射光谱数据。根据透射光谱曲线图筛选出有机鸡蛋与普通鸡蛋光谱响应差异明显的波段区间,分别通过偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)建立鸡蛋类别的鉴别模型,结果表明模型分别根据蛋黄区域与蛋清区域数据进行建模的鉴别准确率相近,进一步对蛋黄区域数据进行分析。由于高光谱数据量大且存在大量冗余信息,给数据采集、存储、传输和建模处理都带来不便,因此分别通过连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对蛋黄ROI数据进行降维处理,剔除了大量冗余信息后再建模。最终,使用对蛋黄ROI区域运用SPA降维后得到的23个特征波长建立的SPA-SVM鉴别模型在测试集的准确率最高达到94.2%。结果表明,通过高光谱技术对有机鸡蛋和普通鸡蛋进行无损鉴别有一定效果。  相似文献   
2.
花椒是我国的八大调味料之一。目前花椒市场掺假现象较为多见,为实现掺假花椒粉的快速定性鉴别,采用了近红外光谱结合化学计量学方法进行了探讨。将麦麸粉、稻糠粉、玉米粉和松香粉以1 Wt/Wt.%的递增梯度分别掺入红花椒粉和青花椒粉中,制备掺假浓度范围为1~54 Wt/Wt.%的掺假花椒粉样品,以掺假花椒粉和纯花椒粉共462份样品依次采集其800~2 500 nm范围的漫反射近红外光谱。采用主成分分析法(PCA)对光谱数据进行分析,前3个主成分累计贡献率达98.72%,做出的得分图表明PCA法对掺假的花椒粉具有较好的区域划分。347份样本作为校正集,以特征谱区2 000~2 200 nm范围的257个采样点的光谱信号作为输入,采用判别偏最小二乘法(DPLS)和支持向量机(SVM)建立定性鉴别模型,经不同光谱预处理,对115份验证集样本进行预测,总体鉴别正确率在97.39%~100%之间,表明该方法是快速定性鉴别掺假花椒粉的一个有效手段。  相似文献   
3.
太赫兹时域光谱不但包含了样品的化学信息和物理信息,还承载了设备噪声、样品状态、环境参数等多方面的背景信息,其光谱的多元性可能影响模型的性能,降低预测精度。能否在复杂、重叠、变动背景下从光谱数据中提取目标组分的特征信息,去除冗余变量,筛选特征谱区,对太赫兹光谱定量、定性分析至关重要。以L-酒石酸为研究对象,在室温下采集6个浓度:10%,20%,40%,50%,60%和80%,共计342个样本的L-酒石酸太赫兹吸收光谱。利用密度泛函理论(DFT)中的B3LYP方法,基于6-31G*(d,p)基组对L-酒石酸单分子模型进行优化并对其太赫兹频谱特性进行理论模拟计算,分析对应特征波峰的分子振动模式,得到0.2~1.6 THz频段吸收谱。与实测吸收谱进行对比,实验所测结果与理论计算结果对应的吸收峰位置基本吻合。采用自举软缩减法(BOSS)对L-酒石酸的太赫兹吸收谱进行特征谱区筛选,并与竞争性自适应加权采样(CARS)、蒙特卡洛无信息变量消除法(MC-UVE)和间隔区间偏最小二乘法(iPLS)3种经典特征谱区筛选法进行对比,分析结果显示BOSS算法选取的有效谱区与DFT理论计算特征谱区重合度最优。分别使用全谱PLS,CARS-PLS,MC-UVE-PLS,iPLS及BOSS五种算法对L-酒石酸光谱进行建模回归分析,实验结果表明,四种谱区筛选方法相较于全谱PLS模型,预测精度均有所提高,其中BOSS算法预测能力提高最为显著,其交互验证均方根误差(RMSECV)、预测均方根误差(RMSEP)、训练集决定系数(R2train)和测试集决定系数(R2test)分别为0.026 0,0.026 0,0.988 1和0.987 5,相较其他模型有更高的预测精度和模型稳定性,为实现基于太赫兹光谱技术的快速定量检测提供了一种有效的方法。  相似文献   
4.
近红外光谱预测稻谷水分含量特征谱区选择及其效率分析   总被引:1,自引:0,他引:1  
对364份水分含量在2.24%~32.66%之间的“冈优916”稻谷样品,经均值中心化、一阶微分、标准归一化和多元散射校正等预处理后,采用分段间隔法、组合分段法、滑动窗口法和反向分段法等进行特征谱区选择,分别使用偏最小二乘法(PLS)和主成分回归(PCR)两种定量分析方法,获得稻谷含水量近红外光谱预测模型最佳的特征谱区。首次给出了分段间隔法、组合分段法、滑动窗口法和反向分段法等传统的特征谱区选择方法的计算复杂度的计算公式,并对比分析了这几种特征谱区选择方法的程序运行效率。结果表明:采用PLS建模对稻谷含水量光谱的预测性能优于PCR建模,但PLS建模的效率低于PCR建模;在PLS建模中,采用反向分段法对稻谷光谱含水量的预测性能最好,其预测集的相关系数RP为0.995 6,预测均方根偏差RMSEP为0.78%;其次是滑动窗口法,其RP为0.994 3,RMSEP为0.89%;但这两种特征谱区选择方法的程序运行效率较低,反向分段法的平均运行时间为4.87 h,滑动窗口法的平均运行时间为29.82 h。该研究结果为今后在并行计算或分布式计算上开发近红外光谱预测模型的快速算法提供参考。  相似文献   
5.
太赫兹时域光谱技术是基于飞秒超快激光技术的有效的光谱检测技术,太赫兹波独特的优势使其成为一种有效的无损检测手段,并被广泛地应用到各个领域。然而在样品检测尤其是液体样品检测过程中,由于Fabry-Perot效应的存在,太赫兹波在样品、样品容器、以及光学元件之间的多次反射,使时域信号产生回波,样品的吸收光谱在频域内产生振荡,有可能会隐藏一些重要的吸收特征。为了解决这一问题,对解卷积算法进行改进,在传统计算模型的基础上,考虑系统中液体池窗片和光学元件对太赫兹波的非线性吸收,将包含回波的太赫兹时域信号描述为太赫兹主脉冲与一系列冲击信号和非线性传递函数的卷积。通过分析,有效去除回波引起的频谱振荡,进一步提高太赫兹波段豆油光学参数的测定精度。实验对比了改进前后0.2~2THz波段豆油的频谱及吸收谱,实验结果证明,与传统的主脉冲截取法相比,本算法不仅能有效去除回波引起的频谱振荡,且在相同检测条件下,可将太赫兹波段豆油样品的频率分辨率由50GHz有效提高至10GHz。该算法不受被测对象参数的影响,同样适用于其他液体的太赫兹时域光谱测量。最后对吸收谱中残余的频谱振荡进行了深入分析。  相似文献   
6.
为了快速有效评定花椒质量等级,应用近红外光谱分析技术,采用偏最小二乘法,对141份花椒样品粉碎成八种不同颗粒大小的粉末,对近红外光谱分别建立挥发油含量预测模型,当粉末样品颗粒大小为40目时,建立的模型最优,交叉验证测定系数r2141为0.9364,交叉验证误差均方根RMSECV141为0.421。使用105份40目粉末样品近红外光谱所建立的模型对36份样品的预测集进行预测,光谱预处理采用Meancentering vector normalization,谱区在6100.1~5774.2cm-1及4601.6~4424.2cm-1,则预测测定系数r326为0.9862,预测集验证误差均方根RMSEP36为0.192,预测相对标准差RSD36为4.95%,预测相对分析误差RPD36为8.517。研究结果表明,对花椒进行近红外光谱扫描前,粉碎到40目时所建立的近红外光谱模型最佳,使用近红外光谱技术快速有效检测花椒挥发油含量是可行的。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号