首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
物理学   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
为了探究反射光谱检测水体中毒死蜱农药的可行性,使用由ASD公司的FieldSpecPro地物波谱仪构成的高光谱采集系统在室内、室外环境获取两种不同浓度区间的毒死蜱样品的光谱数据。基于偏最小二乘(PLS)和主成分分析(PCA)算法分别对毒死蜱样品光谱数据建立全波段定量模型,结果两种模型的预测能力均较高。通过相关性分析(CA)计算相关系数来选择毒死蜱样品光谱的特征波长,其中浓度区间为5~75 mg·L-1的室内、室外实验光谱的特征波长为388,1 080,1 276 nm和356,1 322,1 693 nm,浓度区间为0.1~100 mg·L-1的室内外实验样品光谱的特征波长为367,1 070,1 276,1 708 nm和383,1 081,1 250,1 663 nm。结合PLS算法建立样品特征波长光谱数据的定量模型,结果与全波段模型相比,浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波长模型的校正集决定系数R2C分别提高至0.987 5和0.999 2,预测集决定系数R2P分别提高至0.989 4和0.994 4,校正集均方根误差RMSEC分别降低为2.841和0.714,预测集均方根误差RMSEP分别降低为1.715和1.244;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波长PLS模型的校正集决定系数R2C分别提高至0.998 3和0.998 8,预测集决定系数R2P分别提高至0.998 4和0.999 0,校正集均方根误差RMSEC分别降低为1.383和1.186,预测集均方根误差RMSEP分别降低为1.510和1.229,验证集标准差与预测均方根误差的比值(RPD)有所增加,尤其是针对浓度区间为0.1~100 mg·L-1的实验,RPD值显著增加至21.7,说明基于特征波长建立的毒死蜱样品定量模型具有较高精度的预测能力,但是通过不同浓度区间范围的对比实验发现,ASD地物光谱仪对低浓度的毒死蜱溶液预测的相对误差偏大,存在客观上的检测下限。为了保证不同试验条件下的毒死蜱农药的特征波长都得到分析,增强模型使用的普适性与鲁棒性,根据特征波长选择出4个波段,即351~393,1 065~1 086,1 245~1 281和1 658~1 713 nm作为特征波段。特征波段模型的波长变量个数共38个,相比于全波段模型的432个波长变量,模型变量精简了91.2%,其中浓度区间为5~75 mg·L-1的室内外实验光谱PLS特征波段模型的R2C分别为0.993 7和0.987 8,R2P分别为0.979 8和0.998 2,RMSEC分别为1.690和2.516,RMSEP分别为1.987和0.659;浓度区间为0.1~100 mg·L-1的室内外实验光谱特征波段PLS模型的R2C分别为0.9882和0.9807,R2P分别为0.9391和0.9936,RMSEC分别为3.345和3.942,RMSEP分别为8.996和2.663,且四种实验情况下的模型RPD值均大于2.5,满足定量分析条件。因此采用高光谱采集系统对室内和室外环境中毒死蜱农药的快速检测具有一定的可行性,此研究结果对有机磷农药等面源污染物快速检测有实际的应用价值,可为农田水体有机磷农药快速检测仪器的开发提供理论基础。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号