首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
近年来,市场上出现了一类利用新型无机结合剂处理的绿松石,经此类方法处理的绿松石与天然绿松石极为相似,普遍表现为结构细腻、呈现玻璃-蜡状光泽,行业上称之为“加瓷”处理绿松石(简称“加瓷”绿松石)。采取常规宝石学仪器、红外吸收光谱仪、紫外-可见分光光度计以及能谱色散型X射线荧光光谱仪对“加瓷”绿松石的宝石学性质、振动光谱特征以及化学成分组成特征进行了系统的研究和分析。研究结果显示:“加瓷”绿松石样品的密度大都小于2.200 g·cm-3,与处理前密度有关,故用于“加瓷”处理的样品以密度较低的绿松石为主;“加瓷”绿松石均表现为典型的低密度、较细腻的结构外观和蜡状-玻璃光泽的组合特征,与品质相当的天然绿松石特征不一致,可作为“加瓷”绿松石重要的辅助性鉴别特征。“加瓷”绿松石在长、短波紫外荧光下的发光性与天然绿松石近于一致;显微观察下铁线、裂隙凹陷处常出现白色融出物,孔道内可见毛发状结晶体。“加瓷”绿松石的主要化学成分与天然类似,以CuO,Al2O3和P2O5为主,并含有一定量的FeOT(铁的氧化物),ZnO、SiO2,K2O和CaO。其中,“加瓷”处理绿松石样品中SiO2含量基本在6.40%以上,均高于天然绿松石中的SiO2含量(1.96%~6.25%),而Al2O3和P2O5含量都较天然绿松石偏低,磷铝比例基本与天然绿松石一致,为1.10左右。利用“加瓷”绿松石较高的SiO2含量和表面特征可将其与天然绿松石进行有效鉴别。“加瓷”绿松石与天然绿松石的红外吸收光谱特征基本一致。“加瓷”绿松石的UV-Vis光谱表现为620~750 nm处的吸收峰以及425 nm附近处较为锐利的吸收峰,因颜色不同峰位稍有偏移,但总体与天然绿松石的UV-Vis光谱特征趋于一致。  相似文献   

2.
中国绿松石矿产资源丰富,是世界上主要的绿松石产出国家之一。绿松石作为一种名玉,以其独特的绿色及结构,深受人们的喜爱,也导致市场上出现了大量的优化处理品及仿制品。在旅游珠宝进一步发展的同时,打着“原产地”噱头的绿松石价格起伏非常大,对比同一地点的天然及仿制品玉石,在前人研究的基础上仍需要进一步积累数据。论文以中国湖北竹山秦古镇小巴寨750矿洞采集的天然绿松石与购买于湖北竹山县城珠宝市场的绿松石仿制品为研究对象,采用光学照片、场发射扫描电镜及能谱、红外和拉曼光谱等,从颜色、微形貌、微成分微结构的角度开展对比研究。研究结果表明,天然绿松石样品的颜色多样,呈“月白色-浅蓝色-蓝绿色-黄绿色-绿色-蓝色”的蓝绿色系列变化,晶体颗粒十分细小,呈微米级-纳米级,可见短柱状、层片状晶粒;绿松石仿制品颜色单一,常为较为呆板的绿色,多为散漫分布的颗粒状集合体,且颗粒多呈三方晶系、方解石型结构;天然绿松石主要成分为Al2O3 32.12%,P2O5 30.51%,CuO 10.75%,Fe2O3 5.57%等,为铜铝磷酸盐矿物。绿松石仿制品中主要元素组成为MgO 42.62%,Al2O3 2.66%,SiO2 2.66%等,其成分是以碳酸镁为主的菱镁矿;在红外光谱的对比研究中,天然绿松石样品的红外光谱图的3 083~3 509 cm-1区域,含有大量对应于ν(OH),ν(H2O)的红外吸收峰。绿松石仿制品在2 922 cm-1处有对应于νas (CH2)的红外吸收谱峰,该峰与其被染色有关。这些红外吸收峰也是区分天然绿松石与仿制品的有效指纹峰;在拉曼光谱图的对比研究中,天然绿松石样品的拉曼光谱图中往往具有分别对应于ν(OH),ν(H2O),ν(PO4)的散射峰~3 470,~3 270和~1 039 cm-1,而绿松石仿制品不存在此类拉曼散射峰,他们是区分天然绿松石及其仿制品的有效拉曼指纹峰。基于颜色、微成分、微结构及振动光谱可以有效区分同一地区天然绿松石与其仿制品。此类方法对于其他类型旅游珠宝与其仿制品的鉴定亦有重要的参考价值。  相似文献   

3.
湖北省十堰市竹山县秦古镇小林扒矿区产出了一类较为特殊的绿松石。这类绿松石颜色多为浅绿色、浅黄绿色或浅苹果绿色,产出原石具滑感,性脆,亦称之为“油松”。与其结构细腻度相当的绿松石原料相比,此类绿松石密度普遍明显偏低,硬度偏小;经传统有机结合剂充填处理后,致密度及硬度均未见明显改善,无法作为首饰级材料使用,造成绿松石这类不可再生的宝贵资源严重浪费。以“油松”为研究对象,采用常规宝石学测试仪器、红外吸收光谱仪、X射线粉晶衍射仪、电子探针仪以及环境扫描电子显微镜等对其化学组分及显微结构特征等进行测试,为有效利用这类绿松石资源提供科学依据。测试结果表明,“油松”的相对密度为2.04~2.22;在长波和短波紫外光下荧光反应均显示为惰性。“油松”的红外吸收光谱谱带主要分布在3 700~3 090 cm-1以及1 638~466 cm-1范围内,其中3 509和3 462 cm-1处峰形尖锐的OH致吸收光谱、3 277和3 090 cm-1 附近较宽缓的结晶水致吸收光谱特征与绿松石的官能团区吸收特征一致。“油松”在高频区3 700和3 622 cm-1处具有高岭石或蒙脱石中OH 致弱红外吸收谱峰。在1 638 cm-1附近均出现有强度中等的较为宽缓的吸收峰,该吸收峰与绿松石中H2O的弯曲振动致吸收谱峰一致。指纹区的吸收峰峰形及峰位均与一般绿松石有较大差异,为Si-O及P-O的混合吸收谱峰。“油松”的主要化学组成元素为Si,Al和P,含有少量的Fe和Cu,并含有微量的Mg,Ca及Cr。组成元素的氧化物含量分别为:w(SiO2):25.60%~30.90%,w(Al2O3):26.55%~28.29%,w(FeOT):5.35%~5.90%,w(P2O5):22.00%~23.52%,w(CuO):5.10%~5.87%。“油松”中的Al2O3和P2O5的含量均低于绿松石成分理论值及其他各产地的天然绿松石。相对于天然绿松石中较低的SiO2含量(0.02%~0.12%),“油松”中SiO2的含量明显偏高,均高于25%。“油松”的主要组成矿物为绿松石,并含有一定量的粘土矿物蒙脱石及蒙脱石-高岭石,其硬度低,具有滑感,是“油松”硬度低,具有滑感且优化处理效果不显著的主要原因。  相似文献   

4.
“黑碧”指颜色为黑色,主要成分为阳起石的碧玉。电子探针、激光剥蚀电感耦合等离子体质谱仪分析显示“黑碧”为阳起石碧玉。拉曼光谱和红外光谱的OH振动处产生3个主峰,归属于MgMgMg-OH,MgMgFe2+-OH(Fe2+M1MgM1MgM3-OH,MgM1MgM1Fe2+M3-OH),MgFe2+Fe2+-OH(MgM1Fe2+ M1Fe2+M3-OH,Fe2+M1Fe2+M1MgM3-OH),但与常见和田玉不同,“黑碧”的三个主峰在拉曼光谱OH的振动区(3 600~3 700 cm-1)和红外光谱OH的倍频振动区(7 200~7 100 cm-1)产生分裂现象。将“黑碧”分为5个区域:HB-1,HB-2,HB-3,HB-4和HB-5,进行原位的电子探针和拉曼光谱分析,拉曼光谱在3 600~3 700 cm-1出现3个主峰(A,B,C),将主峰进行分峰拟合处理,显示分裂成6个次级峰(A′和A″,B′和B″,C′和C″),次级峰之间的平均波数差为5 cm-1。前人对角闪石在OH振动处主峰分裂现象的观点各不相同。结合“黑碧”的原位电子探针数据和相关研究文献,认为角闪石中B(M4)位置上的阳离子分布是分裂谱产生的主要原因。角闪石中的B(M4)位置虽然没有直接与W位置的OH相连接,但B(M4)位置上的阳离子通过影响TO4上的桥氧,间接影响W位置上的OH,从而引起OH振动光谱产生一定变化。对比存在类似分裂谱的角闪石样品和“黑碧”的晶体化学式,发现所有的样品在B(M4)位置上均存在Ca2+和Mn2+分布,而其他位置的阳离子占位情况都不相同,表明“黑碧”OH振动光谱产生分裂与B(M4)位置上的Ca2+和Mn2+分布有关。故认为“黑碧”中OH振动光谱产生分裂原因为Ca2+和Mn2+在B(M4)位置上的占位,且高波数峰位归属于Ca2+,低波数峰位归属于Mn2+,即A′,B,C′归属于Ca2+,A″,B″,C″归属于Mn2+。  相似文献   

5.
“黑青”指颜色近黑色,主要成分为透闪石的青玉。“黑碧”指颜色近黑色,主要成分为阳起石的碧玉。采用电子探针、激光剥蚀电感耦合等离子体质谱仪和红外光谱测试分析手段,确定“黑青”“黑碧”的矿物种属。采用拉曼光谱、显微紫外-可见分光光度计、红外光谱对“黑青”“黑碧”的谱学鉴别特征进行探究。“黑青”为标准透闪石拉曼谱峰,“黑碧”的谱峰位置与“黑青”存在几个波数的偏差,向波数小的方向移动。可见-近红外波段,“黑青”出现445 nm吸收峰,680和940 nm宽吸收带,为Fe2+和Fe3+作用;“黑碧”出现445 nm吸收峰,660和690 nm双吸收峰以及970 nm吸收峰,为Fe2+,Fe3+,Cr3+作用。显微紫外-可见光谱可分析到样品的近红外区,“黑青”在1 397,2 310,2 387和2 466 nm出现强吸收峰,1 915和2 120 nm出现弱吸收峰;“黑碧”在1 400,2 313和2 394 nm出现吸收峰。红外光谱分析“黑青”在5 225,4 738,4 692,5 349,4 317,4 190和4 064 cm-1存在吸收峰;“黑碧”在4 708,4 307,4 178和4 031 cm-1存在吸收峰。显微紫外-可见光谱与红外光谱分析结果虽然存在小的差异,但基本保持一致,以红外光谱分析结果为准。将透闪石质的“黑青”、阳起石质的“黑碧”、广西大化阳起石质玉进行对比,综合红外光谱和显微紫外-可见光谱分析结果得出“黑青”(透闪石)与“黑碧”(阳起石)近红外光谱的鉴别特征:“黑青”(透闪石)在4 800~4 600 cm-1存在两个吸收峰,4 350~4 300 cm-1存在分裂双吸收峰;“黑碧”(阳起石)在4 800~4 600 cm-1存在一个弱吸收峰,4 350~4 300 cm-1存在一个吸收单峰。且“黑碧”(阳起石)的近红外吸收峰相较于“黑青”(透闪石)整体向低波数方向移动。  相似文献   

6.
产于黑龙江的“北红玛瑙”与四川凉山、云南保山的“南红玛瑙”是我国珠宝市场上常见的红色玛瑙,然而相应的产地特征研究较少,结合色度学、拉曼光谱、X射线粉晶衍射分析对三个产地的73件红色玛瑙的色度学、矿物学、光谱学特征进行了对比分析。结果表明,“北红玛瑙”的主要物相组成为α-石英和斜硅石,次要矿物组成为针铁矿、赤铁矿;四川凉山与云南保山“南红玛瑙”的主要物相组成为α-石英,次要矿物为赤铁矿、针铁矿、方解石等,少量样品含有斜硅石。黑龙江“北红玛瑙”的颜色主波长范围为574~605 nm,集中于[580, 590]区间,对应黄色-橙黄色-橙色色调,CIE1976Lab色空间中a≤6.2,b≤6.3;四川凉山“南红玛瑙”的主波长范围为589~624 nm,云南保山“南红玛瑙”主波长范围为589~599 nm,两个产地的“南红玛瑙”主波长均集中于[590, 600]区间,对应橙色-橙红色色调,大部分样品a>6.2或b>6.3,整体而言相比“北红玛瑙”颜色色调偏红,其彩度和亮度总体上也高于“北红玛瑙”。拉曼光谱中,斜硅石Si-O-Si对称伸缩-弯曲振动引起的501 cm-1峰在“北红玛瑙”中的强度高,在两个产地的“南红玛瑙”中不存在或者强度弱。斜硅石与α-石英特征峰强度比(I501/I463)和面积比(A501/A463)结果基本一致,在研究及鉴定过程中可以根据实际情况灵活选择。拉曼光谱粉末法测得的斜硅石与α-石英特征峰强度比(I501/I463)和面积比(A501/A463)结果位于大量随机点测的范围内,在日常鉴定中可以用多次无损点测的方法来获得接近粉末法的结果。黑龙江“北红玛瑙”的特征峰面积比(A501/A463)稳定在0.15~0.36,而四川凉山与云南保山“南红玛瑙”稳定在0.00~0.08,指示了两个产地“南红玛瑙”的斜硅石相对含量比“北红玛瑙”少,推测是两地的“南红玛瑙”在初期形成后都经历了较强的脱水和重结晶作用过程,使斜硅石转化成低温的α-石英所致。可以综合利用色度学特征及拉曼光谱,结合斜硅石与α-石英谱特征峰强度比(I501/I463)或面积比(A501/A463),对产于黑龙江的“北红玛瑙”以及四川凉山、云南保山的“南红玛瑙”进行区分,这也对玛瑙的产地鉴定、出土文物溯源等具有重要意义。  相似文献   

7.
近期在广州荔湾珠宝市场出现一种具黄、黑条带的玉石品种,因其花纹形如黄蜂,商家称之为“黄蜂石”。“黄蜂石”的条纹状结构与缟玛瑙的条带状纹理非常相似,容易混淆。对“黄蜂石”进行显微岩相学、X射线粉晶衍射、电子探针、红外吸收光谱及拉曼光谱等分析,旨在探求其基本物理性质、矿物组成,以及谱学特征。结果显示:“黄蜂石”以灰白、黄橙、黑色为主,莫氏硬度3~5,相对密度2.58~2.73,长波紫外光下具弱黄色荧光,与稀盐酸反应起泡。显微岩相学分析显示,“黄蜂石”基质为方解石,呈不规则粒状,粒径0.02~0.3 mm,粒状、纤维状结构。“黄蜂石”中CaO的含量约为53.64%~56.66%,FeO的含量约为2.23%~3.62%,MgO的含量约为1.05%~1.79%,部分测试点中出现As和S元素。样品中Mg/Ca摩尔百分比为2.59%~4.68%,为低镁方解石。红外吸收光谱分析显示,“黄蜂石”的红外光谱特征吸收峰与碳酸盐类矿物理论值一致,为1 514,1 427,881和710 cm-1,由[CO3]2-不对称伸缩振动、面内弯曲振动以及面外弯曲振动导致;黑色矿物中存在黄铁矿的特征峰1 123,1 050,423,1 123和1 050 cm-1为S-S伸缩振动,423 cm-1为Fe2+-[S2]2-伸缩振动。拉曼光谱分析显示,样品的黄色部分中除具方解石的拉曼位移1 083,713,282和157 cm-1外,还有副雄黄的拉曼峰346,233和184 cm-1;橙红色部分显示雄黄的拉曼特征峰338,221及184 cm-1,338 cm-1由S-As-S伸缩振动所致,221 cm-1属于S-As-S弯曲振动结合As-S伸缩振动产生,184 cm-1与As-As伸缩振动相匹配。X射线粉晶衍射分析结果与红外吸收光谱、拉曼光谱等测试结果一致,即“黄蜂石”的主要矿物是方解石,次要矿物为黄铁矿、雄黄及副雄黄等,根据国家标准可定名为“碳酸盐质玉”。  相似文献   

8.
杨帆  潘尚可  丁栋舟  吴云涛  任国浩 《物理学报》2011,60(11):113301-113301
文章用提拉法生长出Li6Gd(BO3)3:Ce晶体,并对其光谱性能与发光过程进行了探索. 借助于真空紫外-紫外透过光谱测试,发现晶体的透过光谱中存在Ce3+离子和Gd3+的特征吸收峰,同时还存在与Ce4+离子相关的电荷迁移带. 对晶体的真空紫外-紫外激发发射光谱进行研究发现,在晶体存在着Ce3+离子的5d→4f辐射跃迁发光与Gd3+离子的4f→4f辐射跃迁发光,而且存在着Gd3+→Ce3+之间的能量传递. 对Li6Gd(BO3)3:Ce晶体的X射线与γ射线激发发射光谱研究可知,晶体在高能射线激发下的闪烁光主要是Ce3+离子的发光. 关键词: 6Gd(BO3)3:Ce晶体')" href="#">Li6Gd(BO3)3:Ce晶体 真空紫外-紫外透过光谱 真空紫外-紫外激发发射光谱 能量传递  相似文献   

9.
条纹绿松石是湖北十堰绿松石市场出现的一种深受消费者喜欢的品种,该研究对象为一块基底为浅蓝绿色,条纹为红褐色的绿松石样品,红褐色条纹在浅缘蓝色基底上规律性分布。对样品进行显微观察、能谱仪成分测定、显微紫外-可见-近红外光谱仪测试和显微激光拉曼光谱仪测试。研究结果表明,样品的红褐色条带由呈近圆形的赤铁矿集合体在绿松石中规律性聚集形成,赤铁矿颗粒细小,呈圆点状、雪花状集合体在绿松石中浸染状分布;化学成分测试结果表明条带处比基底处铁含量高,且杂质矿物中FeO_T含量约为56.06%~59.13%;显微紫外-可见-近红外光谱显示杂质矿物中的致色离子主要为Fe~(3+),可见374 nm附近由Fe~(3+)的d电子跃迁[~6A_1→~4E(~4D)]所致的弱吸收、 429和418 nm附近由Fe~(3+)的d电子跃迁(~6A_1→~4E,~4A_1(~4G))所致的双吸收、 475 nm附近和544 nm附近由Fe~(3+)对{[~6A_1+~6A_1→~4T_1(~4G)+~4T_1(~4G)]}电子跃迁所致的弱吸收;杂质矿物的显微激光拉曼光谱在225, 296, 411, 612, 659和1 320 cm~(-1)处显示赤铁矿的典型拉曼峰。条纹绿松石中杂质矿物的谱学特征表明该杂质矿物为赤铁矿。绿松石中的赤铁矿为绿松石矿床中的伴生矿物,绿松石中赤铁矿的存在为绿松石的产地鉴别以及古代绿松石的产地溯源提供数据支撑,条纹绿松石中杂质矿物赤铁矿的周期性出现表明绿松石形成环境的不稳定及周期性。  相似文献   

10.
颜色不稳定黄色蓝宝石广泛存在市场中,如何有效鉴别颜色不稳定黄色蓝宝石的特征是当前宝石学研究的热点。利用改色实验、紫外-可见光谱(UV-Vis)、三维荧光光谱对颜色不稳定黄色蓝宝石进行深入的谱学特征研究。改色实验表明斯里兰卡黄色蓝宝石中部分存在光致变色的现象,短波紫外光会导致样品着色,而太阳光会导致样品褪色。紫外光照后黄色蓝宝石的颜色由稳定部分和不稳定部分共同组成。颜色不稳定蓝宝石的“着色态”和“褪色态”紫外-可见光谱可见明显的蓝紫区吸收,这可能与蓝宝石中O2--Fe3+的电荷转移有关,导致了蓝宝石稳定的黄色调。蓝宝石的紫外-可见光谱在“着色态”相比“褪色态”可见明显的蓝紫区吸收增强,可能由于紫外光照射增强了O2--Fe3+之间的电荷转移。紫外-可见光谱测试表明样品中具有弱的与Fe有关的吸收峰,这与样品含有较低的Fe含量一致,不足以产生稳定黄色调。三维荧光光谱分析结果表明颜色不稳定黄色蓝宝石的“着色态”和“褪色态”具有一致的激发光波长Ex=325~335 nm、发射光波长Em=560~570 nm的特征荧光中心,在“着色态”时的荧光强度明显高于“褪色态”。含铁黄色蓝宝石具有荧光效应且特征的荧光中心可作为识别这种颜色不稳定黄色蓝宝石的潜在鉴定手段。综合报道了颜色不稳定黄色蓝宝石的谱学特征与可能的颜色成因,为识别颜色不稳定的蓝宝石提供了鉴定依据,同时为后续改色处理的工艺提供了理论基础。  相似文献   

11.
氢氧化锌和氧化锌的红外光谱特征   总被引:1,自引:0,他引:1  
一般认为,氢氧化物和氧化物的红外光谱极其简单,氢氧化锌主要是官能团区的羟基伸缩振动吸收峰和指纹区的Zn—O键弯曲振动峰,氧化锌只有指纹区的Zn-O键弯曲振动吸收,而事实上并非如此。本实验在高浓度的NaOH溶液中,用Zn(NO31·6H2O为原料制取了Zn(OH)2晶体,经低温干燥得ZnO,并研究了它们的红外光谱,结果表明:Zn(OH)2中有两处双峰,ZnO中有意外的—OH吸收峰,并对其形成原因进行了探讨。  相似文献   

12.
产于印度尼西亚的紫色葡萄状玉髓,具有特殊的球粒状外观和浓郁的紫罗兰体色,其双面抛光片在反射光照射下为紫色,透射光下则为棕黄色,且颜色浓集于球粒中心。为探究其颜色成因,进行了偏光显微镜和扫描电子显微镜结构观察,显微紫外-可见光谱,热处理以及LA-ICP-MS原位成分分析。玉髓具有纤维状核心--粗粒石英外壳的特殊结构,粗粒石英外壳粒度500 μm左右,隐晶质部分则主要由粒度小于1 μm的形状不规则的SiO2颗粒组成。紫外-可见光谱显示紫色主要来源于540 nm左右的吸收峰,而黄色则由于谱线“左倾”产生的近紫外区及蓝光区强烈吸收所致。紫外-可见光谱使用塞尔迈耶尔方程修正表面反射误差、减去无吸收波段强度矫正仪器误差,并用最小二乘平滑扣除基线得到540 nm吸收峰的强度信息。计算玉髓在反射光下的紫色调及透射光下的黄色调的L*a*b*值和E*值定量表征颜色。热处理实验中,玉髓的紫色调在350 ℃左右开始褪去,紫外-可见光谱390和540 nm吸收峰消失,反射光和透射光下颜色差异减小,都呈现黄色调。随温度升高至400 ℃后,棕色调加深,出现478 nm左右的吸收峰。热处理过程中谱线吸收强度升高,“左倾”加剧,峰位“红移”。该现象与铁/二氧化硅纳米粒子(Fe/SiO2 NPs)生长过程中的谱形变化相似,有可能与玉髓内部与Fe有关的微细结构或包裹体在热处理过程中的变化有关。颜色参数结合原位成分分析,将数据采用标准分数(Z-score)归一化处理,比对紫色调的E*值与540 nm吸收峰强度及元素含量之间的关系,发现540 nm吸收峰强度可很好的反映紫色的浓集程度,但紫色调与过渡金属元素含量的线性相关性却并不显著,黄色调的E*值则与Fe元素含量具有近似的负相关性。Fe并不以杂质矿物的形式存在,元素含量这一因素也并不能完全决定玉髓的颜色,可能还受到Fe在玉髓中的存在形式,内部微细结构或包裹体等因素的影响。  相似文献   

13.
采集已报道具有规模气洗作用和水洗作用的油气田岩样制成流体包裹体薄片,进行单油包裹体的显微荧光光谱和傅里叶红外光光谱测试,分别研究了遭受气洗作用和水洗作用后捕获的油包裹体的显微荧光和红外光光谱的变化规律特征,总结了两者的变化差异性。气洗导致原油光谱参数QF535值向减值和增值方向分别扩大,CH2/CH3分布值范围未发生明显扩大,而峰值被平均化,H2O/Alkanes比值分布无变化。水洗导致原油的QF535值向增值方向扩大,CH2/CH3分布范围发生了明显的增移,H2O/Alkanes明显增加。针对轻质油藏气洗后QF535变化不明显以及中重质油藏水洗后CH2/CH3变化不明显的特点,首次总结出针对轻质油藏和中重质油藏的水洗和气洗作用的油包裹体光谱参数分布趋势鉴别图版。该研究对利用流体包裹体进行成藏期次精细划分和油气成藏过程恢复具有重要实际意义。  相似文献   

14.
白茎绢蒿是一种广泛分布于新疆富蕴县各个矿区的一种植物。在矿区进行矿产勘查时,由于植物等障碍信息的存在,传统的勘查方法已经难以发挥作用,急需一些新方法、新思路。遥感植物地球化学方法可以巧妙地利用植物这一天然的信息源,把植物从障碍信息转换为了有用信息。帮助人们快速、经济地获取植物屏障下的矿产有用信息。由于其具有大面积、快速、无损性等优点,受到了越来越多学者的关注,成为当下的研究热点。近些年虽然有学者综合考虑“吸收系数”和“衬度系数”这两个指标,证明了白茎绢蒿是对隐伏矿床的勘查具有较好指示性作用的植物,生在在矿床上部的植物可以较好的吸收土壤中的成矿元素,在其体内形成地球化学异常,相比于其他植物异常信息更加清晰可见。但是目前没有人研究是否可以从光谱的角度来发现白茎绢蒿体内的地球化学异常,进而为隐伏矿床的勘查提供参考。因此,本研究首次尝试从白茎绢蒿的光谱信息中寻找出与地球化学异常密切相关的特征波段或者特征值, 然后构建基于植物光谱的隐伏矿床预测模型。采取的方法是首先利用ASD FieldSpec3 型光谱仪分别对生长在矿床上部和背景区的植物进行光谱测定,然后从原始光谱、一阶导数光谱、二阶导数光谱、一阶导数的分形维数、二阶导数的分形维数五个层面对生长在这两个区域的植物光谱进行对比分析,最终优选出了10个差异显著的特征波段,分别为:R824R834R1 533R1 573R1 633R1 643R1 284R1 703,一阶导数的分形维数以及二阶导数的分形维数。这些特征波段可以作为植物地区寻找隐伏矿床的植物地球化学标志。以优选出的10个特征波段作为输入参数,分别用随机森林 (RF)和偏最小二乘-支持向量机(PLS-SVM)构建了基于植物光谱数据的隐伏矿床预测模型。结果表明:(1)两种模型均可以取得较好的效果,但是相比于随机森林模型,偏最小二乘-支持向量机模型具有更好的鲁棒性,泛化能力也更强;(2)利用植物的光谱异常寻找隐伏矿床具有较大的潜力,因为相比于传统方法,更加简单、快速。课题组已经利用动力三角翼和HySpex成像高光谱传感器构建了“超低空探测平台”,可以实现对地“亚米级”的观测。但是如何有效的解决“空间尺度”和“光谱尺度”问题,如何把地面试验场建立的模型更好的应用于超低空探测平台,实现研究区大面积地、快速地植物异常信息提取将是我们下一步的研究重点。  相似文献   

15.
作为一种典型的深海极端环境,热液区域不仅分布着各种硫化物矿产,而且孕育着特殊的生态群落,对热液流体理化性质的研究有助于深入了解热液的运动机制。激光拉曼光谱技术除了定性分析方面的优势外,已经被逐步用于定量分析,并且在原位探测中发挥了重要作用。该研究模拟了深海热液喷口流体的高温高压环境,探讨了水分子和硫酸根离子的拉曼光谱在热液流体温度探测中的应用价值。通过对水峰ν1(H2O)、硫酸根ν1(SO2-4)的拉曼频移与温度、离子浓度的关系进行研究,结果表明水峰ν1(H2O)和硫酸根ν1(SO2-4)的拉曼频移随温度表现出明显的变化,水峰ν1(H2O)的拉曼频移受流体硫酸根浓度的影响明显,因此不适用于硫酸根离子浓度变化明显的热液流体温度的测量。相比之下,ν1(SO2-4)的拉曼频移对流体硫酸根浓度和流体压力不敏感,为温度的反演提供了很好的依据。建立了ν1(SO2-4)的拉曼频移与温度的线性方程:Rν1(SO2-4)=-0.03T+980.69,其中,R2=0.998 6,可用于对深海热液喷口流体温度的原位探测等实际应用。  相似文献   

16.
通过水热法合成了一例新颖的稀土钨多酸化合物H26(C2H8N2H2)K(H2O)[K(H2O)Nd8(H2O)2(W3O12)(SiW10O38)4]·18H2O 1。该化合物的不对称单元由两个[SiW10O38]12-通过一个{Nd4(H2O)12+}结构单元和W3O12连接而成。化合物1簇阴离子通过K离子连接成一维无限链,再通过氢键连接成二维平面结构。针对该化合物,做了一系列表征,测试了其二维相关红外光谱,并对其作了详细分析,结果说明化合物1簇阴离子振动偶极矩对磁...  相似文献   

17.
采用微扰方法和对角化完全能量矩阵法计算了Al2O3粉末吸附的四角对称[Cu(H2O)6]2+基团的自旋哈密顿参量(g因子g∥,g和超精细结构常数A和A). 计算结果表明用这两种理论方法计算的自旋哈密顿参量很接近,并且都与实验结果比较一致. 表明这2种方法都可用于晶体中3d9离子基团的自旋哈密顿参量的研究,通过计算,我们还获得了[Cu(H2O)6]2+基团四角畸变的大小,并对结果进行了讨论.  相似文献   

18.
叶绿素是反映绿色植被健康状态的重要生理参数,虫害胁迫下叶绿素与叶光谱的变化机制较为复杂,深入剖析二者关系对于虫害检测有重要意义。以福建省南平市顺昌县为试验区,测定不同受害情景下毛竹叶叶绿素含量(SPAD)与叶光谱,采用Pearson相关法筛选叶光谱特征指标,建立叶SPAD的多元线性回归、岭回归、随机森林与XGBoost估测模型。通过比较光谱特征指标筛选结果及模型估测效果,分析刚竹毒蛾胁迫下毛竹叶绿素与叶光谱特征的关系及其变化。结果表明:(1)随着虫害程度上升,毛竹叶SPAD呈下降趋势;(2)较之于未受害状态,刚竹毒蛾胁迫下毛竹叶光谱特征发生明显变化,“绿峰”和“红谷”趋于消失,“红边”斜率减小,近红外波长反射率降低;(3)基于全样本拟合叶SPAD的最优光谱特征指标为VOG2,R515/R570,CIred,PRI与NDVI705,最佳估测模型为多元线性回归模型(R2=0.753 7,RMSE=3.015 0);(4)基于不同受害程度样本拟合毛竹叶SPAD,最优光谱特征指标分别为健康:CIred,VOG2,ARVI,R515/R570,DVI;轻度:RENDVI,RERVI,REDVI;中度:RENDVI,RERVI,REDVI;重度:VOG2,CIred,NDVI705,PRI;小年:PRI,NDVI705,VOG1,CIred。最佳估测模型为多元线性回归模型,模型精度分别为健康(R2=0.882 3;RMSE=1.638 8);轻度(R2=0.180 2;RMSE=3.335 4);中度(R2=0.360 4;RMSE=3.886 7);重度(R2=0.467 7;RMSE=2.601 8);小年(R2=0.732 4;RMSE=2.375 4)。由此发现,随着虫害等级上升,毛竹叶光谱特征指标也随之改变,关系模型估测精度呈现先急剧下降后缓慢抬升的态势,模型对健康与小年叶SPAD估测效果较好,对轻—中—重度危害叶SPAD估测效果较差;当毛竹叶SPAD与叶光谱特征的关系趋向紊乱时,预示可能有刚竹毒蛾危害发生。  相似文献   

19.
钬铥双掺钨酸镱钾激光晶体光谱参数计算   总被引:1,自引:1,他引:0       下载免费PDF全文
采用顶部籽晶提拉法(TSSG)生长了钬铥双掺钨酸镱钾(KHo0.04Tm0.06Yb0.9(WO42)激光晶体。测试了该晶体的吸收及荧光光谱,计算了其光谱参数。实验结果表明:该晶体在890~1 000 nm范围吸收带较宽,半峰宽为90 nm,计算了主峰1 000 nm处吸收截面为16.92×10-20 cm2;Tm3+在1 690~1 812 nm范围存在较宽的吸收带,半峰宽为118 nm,易于实现Yb→Ho、Yb→Tm、Tm→Ho的能量传递。根据Judd-Ofelt理论,计算了该晶体的光谱强度参数。根据Tm3+、Ho3+、Yb3+离子能级图,讨论了产生1 750~2 200 nm荧光发射的3种能量传递方式。最后计算了主峰2 030 nm处受激发射截面为3.47×10-20 cm2,表明该晶体可作为2 μm波段优异的激光增益介质。  相似文献   

20.
农作物在受到重金属污染以后,会破坏本身的组织细胞结构和叶绿素含量,从而影响农作物的新陈代谢和健康状况。人和动物如果食用了污染的农作物以后,会有致命的伤害。高光谱遥感目前被广泛应用于监测农作物受重金属污染的程度。重金属污染下的农作物叶片的光谱变化很微小,传统的监测方法和常规的光谱特征参数很难将光谱之间的微弱差异区别开,目前高光谱遥感应用是研究的重点和难点。通过设置不同浓度的Cu2+和Pb2+胁迫下玉米盆栽实验,采集玉米叶片的光谱数据、叶绿素的相对含量以及重金属Cu2+和Pb2+的相对含量。提出了包络线去除(CR)、光谱相关角(SCA)、光谱信息散度(SID)以及正切函数(Tan)和兰氏距离(LD)相结合的LD-CR-SIDSCAtan模型,将其与传统的光谱测度方法,如光谱相关系数(SCC)、光谱角(SA)、光谱角正切(DSA)、光谱信息散度-光谱相关角正切(SIDSAMtan)、光谱信息散度-光谱梯度角正切(SIDSGAtan)和常规的光谱特征参数,如红边最大值(MR)、绿峰高度(GH)、红边一阶微分包围面积(FAR)、红边一阶微分曲线陡峭度(FCDR)、蓝边(DB)、红谷吸收深度(RD)相比较,验证了该模型的优越性和可行性。并且将LD-CR-SIDSCAtan模型应用于不同浓度下Cu2+和Pb2+胁迫的玉米叶片的整体波形和子波段的光谱差异信息的测度上。结果表明,LD-CR-SIDSCAtan模型实现了重金属Cu2+和Pb2+污染的定性分析,能够测度光谱相关系数达到0.99以上的相似光谱之间的差异信息,波形差异信息与叶片测得的叶绿素相对含量和重金属Cu2+和Pb2+相对含量显著相关,也分别找到了重金属Cu2+和Pb2+胁迫下的光谱响应波段。在测度光谱数据的整个波段区间范围,模型值为负值时的光谱差异要比模型值为正值更加明显;在模型值为正值时,如果数值越大,光谱的差异性也越大。因此,随着重金属Cu2+和Pb2+浓度的增加,光谱的差异增大,意味着重金属Cu2+和Pb2+污染程度更为严重;玉米植株受到重金属Cu2+胁迫污染,在测度光谱数据的局部子波段区间范围时,“蓝边”、“红边”、“近谷”、“近峰B”处对重金属Cu2+胁迫污染响应特别的敏感,可以作为监测重金属Cu2+污染程度的有效波段;当玉米植株受到重金属Pb2+胁迫污染时,在“紫谷”、“蓝边”、“黄边”、“红谷”、“红边”、“近峰A” 处对重金属Pb2+胁迫污染响应特别的敏感,可以作为监测重金属Pb2+污染程度的有效波段。最后通过LD-CR-SIDSCAtan模型的应用结果与玉米叶片中Cu2+和Pb2+含量进行线性拟合分析,从而反演和预测了重金属Cu2+和Pb2+对玉米植株的污染程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号