首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 593 毫秒
1.
介绍了东方超环(experimental advanced supereonducting tokamak, EAST)托卡马克上的两套快速极紫外(EUV)光谱仪系统波长的原位标定方法、结果及其应用。这两套谱仪均为掠入射平场谱仪,时间分辨均为5 ms·frame-1。两套谱仪分别工作在20~500和10~130 Å的波段范围,由步进电机控制探测器在焦平面上移动实现整个观测波段上的波长扫描。利用这两套谱仪系统观测极紫外波段光谱,计算EAST中低-高Z杂质离子特征线辐射强度随时间的演化,监测和研究等离子体中杂质的行为。高Z杂质尤其是钨、钼等金属元素,发出的EUV波段光谱的构成非常复杂,准确识谱对谱仪精确的波长测量能力以及谱分辨能力要求很高,因此精确的波长标定是识别钨、钼等高Z杂质谱线以及研究它们行为的最关键的技术之一。利用EAST等离子体中类氢到类铍的低、中Z杂质的特征谱线以及它们的二阶甚至三阶谱线,结合谱仪系统的色散能力,对这两套快速极紫外光谱仪的波长进行了精确的原位标定。用于波长标定的杂质谱线有O Ⅷ 18.97 Å,O Ⅶ 21.60 Å,C Ⅵ 33.73 Å,Li Ⅲ 113.9 Å,Li Ⅲ 135.0 Å,Li Ⅱ 199.28 Å,Ar ⅩⅤ 221.15 Å,He Ⅱ 256.317 Å,He Ⅱ 303.78 Å,Ar ⅩⅥ 353.853 Å及C Ⅳ 384.174 Å等。利用波长标定的结果对观测到的EUV光谱进行谱线识别,两套谱仪观测到的绝大多数谱线波长与美国技术标准局(National Institute of Standards and Technology, NIST)数据库的标准波长相差分别小于0.08和0.03 Å。开发了谱仪波长原位标定程序模块,将这个模块内嵌到谱仪数据实时上传的交互式软件中,实现了全谱数据以及特征谱线强度随时间演化数据的实时处理和上传。同时利用开发的全谱分析交互式软件以及EAST上的数据查看软件,最终实现了快速EUV谱仪自采数据的准实时分析、读取和查看。  相似文献   

2.
铜原子能级结构的理论计算具有非常大的挑战性。本文基于多组态Dirac-Hartree-Fock(MCDHF)方法和相对论组态相互作用(RCI)方法,通过三个大规模的关联模型计算了单激发态3d104p 2P1/2、双激发态3d94s(3D)5s4D3/2,1/2,3d94s(3D)5s 2D3/2,3d94s(1D)5s 2D3/2以及离子态3d10 1S0能级和波函数。结果表明,铜原子能级结构对有限组态空间的选择极其敏感,双激发态3d94s(3D)5s 4D3/2,1/2,3d94s(3D)5s 2D3/2,3d94s(1D)5s 2D3/2和离子态3d10 1S0与单激发态之间的能量差相对于已有实验结果均存在大约-0.4 eV的偏差,而计算得到的共振电子能量与实验结果符合得较好。此外,根据辐射跃迁矩阵元和非辐射跃迁矩阵元计算了双激发态的Fano参数q,并基于Fano理论得到了铜单激发态3d104p 2P1/2的总光电离截面,该理论考虑了直接光电离与光激发自电离之间的干涉效应,即共振3d94s(3D)5s 4D3/2,1/2、3d94s(3D)5s 2D3/2和3d94s(1D)5s 2D3/2具有明显的非对称的Fano轮廓,表明光电离过程与光激发自电离过程之间的干涉对双激发态共振附近的光电离截面轮廓有着极其重要的影响。  相似文献   

3.
配备电子冷却装置的重离子储存环为开展高电荷态离子的双电子复合(dielectronic recombination,DR)精密谱学研究提供了绝佳的实验平台。本工作在兰州重离子加速器冷却储存环主环(HIRFL-CSRm)上开展了类锂36,40Ar15+离子的双电子复合实验,实验观测了电子-离子质心系能量范围为0~35 eV的双电子复合速率系数谱。通过外推法获得了36,40Ar15+离子2s1/2→2p1/2和2s1/2→2p3/2的跃迁能量。同时利用GRASP2K程序理论计算了36,40Ar15+离子2s1/2→2p1/2和2s1/2→2p3/2跃迁的质量移动因子和场移动因子,进而得到双电子复合谱的同位素移动值。36,40Ar15+离子2s1/2→2p1/2和2s1/2→2p3/2同位素移动分别为0.861 meV和0.868 meV。它们均小于目前CSRm上双电子复合实验的实验分辨为~10 meV,进而解释了实验测量的DR谱上未能观察到同位素移动的原因。然而,高电荷态离子的同位素移动场效应与原子序数Z5成正比,因此,在重离子加速器冷却储存环实验环(HIRFL-CSRe)以及未来大型加速器--强流重离子加速器装置(HIAF)上有望通过DR精密谱学方法研究高电荷态重离子甚至放射性离子的同位素移动,进而获得相关原子核的核电荷半径等信息。The cooler storage ring is equipped with an electron-cooler. It is an excellent experimental platform for dielectronic recombination (DR) experiment of highly-charged ions. In this paper, the dielectronic recombination experiments of lithium-like Ar15+ ions with mass number 36 and 40 are conducted at the HIRFL-CSRm(main ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou). The experimental electron-ion collision energy scale is from 0 eV to 35 eV. Extrapolation method is exploited to obtain the excitation energies of transitions 2s1/2→2p1/2 and 2s1/2→2p3/2 of the 36,40Ar15+ ions from experimental data. Meanwhile, GRASP2K program is utilized to calculate the mass shift factors and field shift factors of 36,40Ar15+ ions for 2s1/2→2p1/2 and 2s1/2→2p3/2 transitions to obtain isotope shifts in DR spectra. In theoretical calculation, isotope shifts of 36,40Ar15+ ions corresponding to 2s1/2→2p1/2 and 2s1/2→2p3/2 are 0.861 meV and 0.868 meV, respectively. They are both less than the experimental precision (~10 meV) of these dielectronic recombination experiments at the CSRm, which explains that isotope shifts cannot be distinguished from the experimental dielectronic recombination spectra. However, the field shift of highly-charged ions is proportional to Z5. In the future, the dielectronic recombination experiments of highly-charged heavy ions even radioactive ions will be conducted at the HIRFL-CSRe (experimental ring of the Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou) and the future large accelerator facility--HIAF(High intensity Heavy-ion Accelerator Facility) to measure isotope shifts to obtain the nuclear charge radius information.  相似文献   

4.
针对不同体积分布指数p的W/Cu连续功能梯度材料的偏滤器第一壁结构,采用有限元软件计算了 8MW•m−2稳态运行热加载以及等离子体破裂条件下1GW•m−2热流冲击下的力学响应。相同稳态加载条件下,W/Cu 连续功能梯度材料的最优分布指数与分层梯度材料存在较大差异,其最优等效应力比分层梯度材料要小26%,表现出更优异的性能。在热冲击响应过程中,连续梯度W/Cu材料塑性损伤随p值不同也存在较大变化,其最优p值与其稳态运行时热应力最优p值存在一定差异,从第一壁应用条件考虑,应综合选取,最佳p值在1.2附近。综合来看,连续梯度W/Cu材料具有更连续变化的热物理属性及力学性能,在聚变堆第一壁结构设计中具有更大的应用潜力。  相似文献   

5.
硅铝酸盐由于其化学性质稳定、原材料易得,是发光材料的一种有效基质,所以受到广泛关注。其中,硅铝酸锶(Sr2Al2SiO7)属于四方晶系,具有稳定的晶体学结构。Sm3+作为一种常用的激活剂,其特征峰在波段300~750 nm内都有分布,有些特征激发峰位于近紫外光区,在近紫外区有强的吸收。因此,以Sr2Al2SiO7为基质、Sm3+为激活剂可以制备出符合LED要求的红色荧光粉。本工作采用高温固相法合成一系列Sr2-x-yAl2SiO7x%Sm3+, y%Li+荧光粉。通过X射线衍射(XRD)、光致荧光光谱(PL)、绝对量子效率测量系统对样品的晶体结构、发光特性以及内量子效率进行表征和测量,并且对样品的XRD进行精修,色纯度计算。结果表明:合成样品均为单相Sr2Al2SiO7,掺杂Sm3+和电荷补偿剂Li+后,没有引起相变。相对于其他阳离子Sm3+(r=1.079 Å)、Li+(r=0.920 Å)的半径与Sr2+(r=1.260 Å)半径最为相近,因此更容易替代Sr2+的格位,并且两种离子半径比Sr2+小而使得样品晶体结构参数a,b,cv逐渐减小。样品的最佳激发峰在403 nm处,相比于Ca3Y2(Si3O9)2∶Sm3+的激发峰出现了3 nm蓝移,表明样品在近紫外光下有较强的吸收,这种长紫外波长的光有利于在照明领域的应用。在403 nm近紫外光激发下,可以看出,在500~750 nm范围内,Sm3+的发射峰位于564 nm(4G5/2→6H5/2),601 nm(4G5/2→6H7/2),648 nm(4G5/2→6H9/2)和713 nm(4G5/2→6H11/2),其中601 nm发射峰强度最大,使样品呈现强烈的橙红色光。发射峰在607与618 nm处出现劈裂现象,是因为晶体场的相互作用引起了能级劈裂。单掺Sm3+的发射光谱强度随着浓度的增加先增大后减小,当掺杂浓度为2%时发光强度最大。利用Blasse提出的能量传递临界距离公式,计算得出临界距离RC≈19.734 Å,从而说明了浓度猝灭原因是Sm3+之间的多级相互作用。根据Dexter理论,计算出多极相互作用函数θ≈6,表明Sr2-xAl2SiO7x%Sm3+的浓度猝灭机理是电偶极-电偶极(d-d)相互作用。为进一步提高发光强度,掺杂了电荷补偿剂Li+,使晶体内部电荷达到平衡。实验结果表明,Li+最佳掺杂浓度为2%,与未加入电荷补偿剂相比,发光强度提高了2倍并测试其内量子效率为43.6%。荧光粉色坐标均在(0.60,0.39)附近,位于橙红色区域,具有较高色纯度(约92.2%)。该荧光粉在三基色白光LED中的红色成分有应用潜力。  相似文献   

6.
利用Nd∶YAG激光器输出的1 064 nm激光在大气压环境中产生了Ar等离子体,测量了Ar等离子体的发射光谱,从Ar等离子体发射光谱中筛选出了来自Ar Ⅰ和Ar Ⅱ 15个上能级的35条跃迁谱线,基于分支比方法计算了光谱仪的辐射强度响应效率标定系数。此外,利用氘灯和卤钨灯标准光源,对光谱仪辐射强度响应效率进行了标定,得到了针对不同光栅的光谱仪的辐射效率标定系数。用分支比方法获得的辐射强度响应效率标定系数与标准光源得到辐射强度响应效率标定系数具有较好的一致性,其最大相对误差为5.4%。该研究的标定方法可以为一些大型聚变装置的光谱测量的在线标定提供借鉴和参考。  相似文献   

7.
中心波长为13.9nm的正入射Mo/Si多层膜   总被引:1,自引:0,他引:1  
用由铜靶激光等离子体光源等组成的反射率计对自行设计的周期厚度为7.14nm的120层Mo/Si多层膜进行极紫外(EUV)波段反射率测量。由于多层膜层数增加所引起的吸收、膜层界面之间的扩散以及镀膜过程中的膜厚控制误差或表面被氧化(污染)等原因,正入射Mo/Si多层膜在13.9nm处的反射率低于理论计算值73.2%,最后用原子力显微镜(AFM)测量其表面粗糙度为σ=0.401nm。  相似文献   

8.
空间偏移拉曼光谱(SORS)能够准确、快速、无损检测多层混浊介质样品深层生化构成信息。该研究通过搭建集成化逆向SORS光谱分析装置,在实现逆向SORS和背散射式拉曼光谱两种不同的光谱检测模式的基础上,检测与分析了不同空间偏移量(Δs)条件下双/三层组织模型内的深层拉曼光谱信息,并根据几何光学理论和投影测量原理,量化标定了Δs与锥透镜空间位置之间的关系,这为精确控制光谱检测条件提供了保障。为了验证该装置的检测能力,采用由羊肩胛骨/对乙酰氨基酚组成的双层模型和猪皮/硅橡胶/对乙酰氨基酚组成的三层模型,获得不同Δs条件下包含样品表层和深层信息的混合光谱。并进一步对该混合光谱进行面积归一化处理,观察到随着Δs的增大样品表层的拉曼贡献逐渐减小,而第二层以及第三层的拉曼贡献逐渐增大的现象。在此基础上,通过选择模型中每层物质的拉曼特征峰计算其相对拉曼强度,分析研究了相对拉曼强度、空间偏移量与样品厚度三者之间关系,即当Δs增大时相对拉曼强度比值随之增加,这清晰地表明深层物质的拉曼强度增加。然而,在同一Δs条件下,相对拉曼强度随着表层物质厚度的增大而减小。以上实验结果表明,我们搭建的集成化逆向SORS光谱分析装置可从深度达8 mm的生物模型下获取光谱信息,并证明了该装置在经皮无损探测方面的应用价值。  相似文献   

9.
磁约束聚变等离子体中高Z杂质的存在给等离子体的约束状态带来不同程度的影响.EAST装置第一壁是钼瓦,不可避免地,等离子体与壁相互作用会使钼进入等离子体成为高Z杂质.本文利用EAST托卡马克装置快速极紫外杂质谱仪系统实现了对5—500?(1?=0.1 nm)波段范围内杂质线光谱进行同时监测.结合EAST等离子体低、中Z杂质的特征谱线对波长进行原位标定,基于NIST数据库和已有实验数据进行对比,并利用归一化谱线强度随时间演化行为,对较低电子温度(Te0=1.5 keV)等离子体中5—485?波段范围内由瞬态钼杂质溅射产生的钼光谱进行了系统性识别.在15—30?和65—95?波段范围观测到分别由电离态Mo19+-Mo24+(MoⅩⅩ-MoⅩⅩⅤ),Mo16+-Mo29+(MoⅩⅦ-MoⅩⅩⅩ)组成的未分辨跃迁系.而且在EAST上观测并识别出27—60?和120—485?波段范围内低价钼离子(Mo4+-Mo17+)的多条谱线(MoⅤ-MoⅩⅧ...  相似文献   

10.
综述了托卡马克装置几套常规被动光谱诊断的绝对标定方法以及利用基于碰撞辐射模型的原子数据库诊断出粒子密度以及通量等物理量的方法。其中诊断系统包括可见波段具有高时空分辨的光电二极管阵列、具有高时间分辨的光电倍增管,具有二维空间分辨的高速相机,具有时空分辨和高谱分辨的光谱仪;极紫外波段具有时空分辨的光谱仪等。  相似文献   

11.
应用半解析方法,研究了直圆柱位形下等离子体压强P0分别为P0=0、P0=常数和P0=f(r)时Line-tied扭曲不稳定性的增长率和二维径向本征函数的演化规律。结果表明,P0=0和P0=常数时的轴向波数k的范围相同,但P0=常数时的增长率比P0=0时的小。P0=f(r)时的轴向波数k的范围和增长率则都比P0=0时的大,同时磁流体的速度变化也较大。因此,P0=f(r)更接近实际的物理模型(例如日冕的喷射问题)。  相似文献   

12.
稀土氟化物纳米材料及其贵金属复合物具有独特的光、电、磁性质,在生物标记、光学储存、显示、防伪等领域有着广泛的应用,已成为材料科学领域的研究热点之一。采用微乳液法制备了NaYF4∶Yb3+, Ho3+和NaYF4∶Yb3+, Ho3+@Au复合材料,XRD测试表明NaYF4∶Yb3+, Ho3+的结晶情况良好,无杂质峰,为立方相,NaYF4∶Yb3+, Ho3+@Au产物的衍射峰中同时含有NaYF4与Au两种晶相;SEM图像显示两种纳米粒子均为形貌、尺寸较为均一的球形粒晶为58 nm左右;上转换光谱中显示Ho3+在484, 682和767 nm处具有很高的发光强度,分别对应于5S2→5I8, 5F5→5I8, 5S2→5I7跃迁。  相似文献   

13.
硫代巴比妥酸反应物(TBARS)是表征肉品脂肪氧化程度的主要化学信息.为探究二维相关光谱技术(2DCOS)筛选羊肉中TBARS含量的特征变量的可行性,利用高光谱成像技术结合2DCOS分析建立TBARS含量的快速无损检测方法.采集样本在400~1000 nm的光谱反射图像,通过ENVI 4.8软件在光谱图像上手动设置感兴...  相似文献   

14.
硬石膏(CaSO4)是地球上分布最广的硫酸盐矿物之一,为研究硬石膏向高压硬石膏转变的压力条件和相变机理、确定硬石膏拉曼光谱压标的适用范围,实验结合水热金刚石压腔和激光拉曼光谱实验技术,研究了常温高压条件下硬石膏的相变过程以及硬石膏和高压硬石膏的拉曼光谱特征。实验结果显示,常温条件下硬石膏向高压硬石膏发生相变的压力在2.3 GPa左右,但是该相变压力在增压和降压过程中存在较大差异,表明硬石膏与高压硬石膏的转变过程存在明显滞后性,证实了该相变过程属于重建型相变。由于重建型相变的控制因素除了温度和压力之外,还包括相变的速率以及矿物结构的亚稳定性等,从而很好地解释了不同实验者获得的硬石膏与高压硬石膏的相变压力之间存在的巨大差异。与硬石膏相比,高压硬石膏的拉曼光谱特征表现为SO4对称伸缩振动(ν1)从1 128.28 cm-1突然下降至1 024.39 cm-1,同时对称弯曲振动(ν2)分裂为441,459和494 cm-1三个峰,反对称伸缩振动(ν3)分裂为1 136,1 148,1 158和1 173 cm-1四个峰,反对称弯曲振动(ν4)也分裂为598,616,646和671 cm-1四个峰,可以作为判定硬石膏进入高压相态的有效标志。与硬石膏相比,高压硬石膏SO4振动产生的拉曼峰数量更多、强度更低,表明影响SO4振动的原子更多、分布更加复杂,这与高压硬石膏晶体结构(独居石结构,单斜晶系)的对称性比硬石膏(斜方晶系)更低相吻合。在硬石膏结构稳定的压力范围内(常压至2.3 GPa),硬石膏SO4拉曼振动中除了ν2,416的振动频率变化不显著以外,其余振动均随着压力的升高以稳定的速率向高波数方向移动,同时谱峰的强度、形态和半高宽没有明显改变,从而保证了不同压力下硬石膏的拉曼峰具有一致的拟合误差和压力标定精度。同时,还通过方解石ν1,1 085拉曼峰随压力的变化速率、方解石向CaCO3-Ⅱ以及CaCO3-Ⅱ向CaCO3-Ⅲ的相变压力对硬石膏压力标定结果进行检验,确定了硬石膏压标的可靠性。  相似文献   

15.
采用细叶蜈蚣草(Egeria najas)作为受试植物,分别用不同浓度的ZnO NPs处理细叶蜈蚣草六天,通过OJIP荧光动力学曲线和脉冲瞬态荧光动力学曲线评估暴露在不同浓度的ZnO NPs悬浮液中的细叶蜈蚣草的光合性能。当细叶蜈蚣草暴露在ZnO NPs悬浮液中,光系统Ⅱ关闭的净速率(MO)、J点的相对可变荧光强度(VJ)和单位反应中心用于热能耗散的能量(DI0/RC)有明显的下降趋势(p<0.05),最大光化学量子效率(ΦP0)、捕获的激子中用来推动电子传递的效率(Ψ0)、电子传递的量子产额(ΦE0)、实际光化学量子效率(PSⅡ)有上升的趋势(p<0.05)。表明ZnO NPs增强了光系统Ⅱ反应中心之间的连通性、促进了光系统Ⅱ受体侧的电子传递和光能的利用,即ZnO NPs在某些方面促进了细叶蜈蚣草的光合作用。用相应浓度的Zn2+溶液来处理细叶蜈蚣草,当细叶蜈蚣草暴露在Zn2+溶液中,光系统Ⅱ关闭的净速率、J点的相对可变荧光强度和单位反应中心用于热能耗散的能量有明显的上升趋势(p<0.05),最大光化学量子效率、捕获的激子中用来推动电子传递的效率、电子传递的量子产额、实际光化学量子效率有下降的趋势(p<0.05),单位反应中心吸收的光能(ABS/RC)、捕获的光能(TR0/RC)和非调节性能量耗散量子产量(NO)有明显的上升趋势(p<0.05),即Zn2+降低了光系统Ⅱ反应中心之间的连通性、抑制了光系统Ⅱ受体侧的电子传递和光能的利用并使反应中心失活,即Zn2+抑制了细叶蜈蚣草的光合作用。在ZnO NPs处理细叶蜈蚣草的实验中并没有发现光合作用受抑制情况,表明ZnO NPs的促进作用强于其释放的游离Zn2+的抑制作用。  相似文献   

16.
重金属铜离子(Cu2+)与铅离子(Pb2+)污染对玉米叶片光谱的影响微弱、隐蔽而难于探测。研究中设置不同浓度Cu2+, Pb2+胁迫的玉米盆栽实验,测定了玉米叶片光谱、叶片中Cu2+, Pb2+含量与叶绿素相对含量,分析了Cu2+, Pb2+污染胁迫下玉米叶片光谱响应特征,并选取480~670与670~750 nm范围来进行分析,在光谱维中定义了光谱微分差信息熵指数与在频率域中通过谐波分析提取了前三次谐波振幅(c1, c2与c3)指数,并用所定义的指数探测分别受Cu2+, Pb2+胁迫玉米叶片光谱微弱差异。实验结果表明,在480~670与670~750 nm范围内,玉米叶片中重金属离子浓度越大,其光谱微分差信息熵就越大;在480~670 nm波段,谐波分解后第一谐波振幅c1与第二谐波振幅c2可用于识别Cu2+, Pb2+污染程度;在670~750 nm波段,第一谐波振幅c1、第二谐波振幅c2与第三谐波振幅c3可用于识别Cu2+污染程度,而c2则可以识别Pb2+污染程度,污染胁迫越大振幅越大。在480~670与670~750 nm波段内,光谱微分差信息熵与前三次谐波振幅可作为识别玉米受Cu2+, Pb2+污染胁迫程度的指数,从光谱维与频率域两种维度来识别玉米受Cu2+, Pb2+胁迫程度的方法可行,文中定义的两类指数可稳健、可靠地探测与识别玉米受Cu2+, Pb2+影响所产生的光谱微弱差异,研究结果对利用高光谱来探测植被受重金属污染胁迫程度具有一定的参考价值。  相似文献   

17.
提出了一种阵列式线-线沿面介质阻挡放电结构,利用双极性高压纳秒脉冲电源,在大气压空气中激励产生了相对大面积的放电等离子体。其中,高压电极、地电极均为圆柱形金属,放电反应器由20组相间排列的阵列式线型高压电极和套有介质管的阵列式线型地电极组成。利用电压探头、电流探头、示波器等测量了放电电压和放电总电流,并计算得出了放电的实际电流。利用光纤、光栅光谱仪、CCD等测量了波长范围在300~440 nm和766~778 nm的发射光谱,即氮分子第二正带N2 (C3Πu→B3Πg)包括Δν= +1, 0, -1, -2, -3、氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱。比较了氮分子第二正带N2 (C3Πu→B3Πg)的各个振动峰和各个活性物种的发射光谱强度,以及这些发射光谱强度随着脉冲峰值电压的变化。测量了N2(C3Πu→B3Πg, 0-0)的二次、三次衍射光谱,与原始光谱在转动带、背景光谱等方面进行了比较,并计算了二次衍射和原始光谱之间的峰值比。利用氮分子第二正带N2 (C3Πu→B3Πg, Δν=+1, 0, -1, -2)和氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g, 0-0)模拟了等离子体的转动温度和振动温度,对模拟结果进行了比较,并研究了脉冲峰值电压对等离子体振动温度和转动温度的影响。通过测量放电的电压和计算得到的放电电流发现,当脉冲峰值电压为22 kV,脉冲重复频率为150 Hz时,阵列式线-线沿面介质阻挡放电的放电电流在正脉冲、负脉冲两个方向上均可达75 A左右。通过诊断放电等离子体的发射光谱发现,在测量的波长范围内,放电产生的活性物种主要有氮分子第二正带N2 (C3Πu→B3Πg)、氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)。在脉冲峰值电压22~36 kV的变化范围内,氮分子第二正带N2(C3Πu→B3Πg, 0-0)的发射光谱强度始终保持最强,N2 (B3Πg→A3Σ+u)次之,而氮分子离子第一负带N+2(B2Σ+u→X2Σ+g)和O (3p5P→3s5S2)的发射光谱强度较弱。同时,当脉冲峰值电压升高时,氮分子第二正带N2 (C3Πu→B3Πg)的所有振动峰,以及氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱强度均随之升高。通过比较氮分子第二正带N2(C3Πu→B3Πg, 0-0)的原始、二次衍射、三次衍射光谱发现,二次、三次衍射光谱的转动带更清晰,但三次衍射光谱的背景更强,因此氮分子第二正带N2(C3Πu→B3Πg)的二次衍射光谱更有利于模拟等离子体的转动温度。通过比较模拟得到的振动温度和转动温度发现,氮分子第二正带N2 (C3Πu→B3Πg, Δν=-2)在N2 (C3Πu→B3Πg)四个谱带Δν=+1, 0, -1, -2中最适于模拟等离子体振动温度,而利用氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g,0-0)模拟得到的等离子体转动温度要比N2 (C3Πu→B3Πg, Δν=-2)的模拟结果高约10~15 K。同时,当脉冲峰值电压升高时,由N2 (C3Πu→B3Πg, Δν=-2)和N+2 (B2Σ+u→X2Σ+g, 0-0)模拟得到等离子体的转动温度均出现了略微上升的趋势,而利用N2 (C3Πu→B3Πg, Δν=-2)模拟得出的振动温度则略微下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号