首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
物理学   12篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2019年   5篇
  2013年   1篇
排序方式: 共有12条查询结果,搜索用时 281 毫秒
1.
基于高光谱成像技术的滩羊肉新鲜度快速检测研究   总被引:1,自引:0,他引:1  
滩羊肉的新鲜度是其品质安全的一个重要衡量指标,也是肉品品质安全控制的关键环节。挥发性盐基氮(TVB-N)是表征肉品腐败过程主要的化学信息,能有效地评价出滩羊肉的新鲜度。然而,TVB-N的传统检测过程繁琐且人为影响因素大,检测结果缺乏客观性和一致性,不能满足当今肉品检测过程无损、快速、高效的需求。高光谱成像技术符合现代检测技术向多源信息融合方向发展的需求,已在食品安全领域得到广泛应用。利用可见/近红外高光谱成像技术(400~1 000 nm)结合动力学和化学计量学方法以及计算机编程技术,将同时实现滩羊肉贮存期内(15 ℃环境)TVB-N 浓度的快速检测和贮藏期的预测。研究中提取每个样品感兴趣区域的平均光谱数据,选用蒙特卡洛算法剔除异常样本。采用X-Y共生距离(SPXY)法划分为校正集和预测集,分别选用多元散射校正(multiplicative scatter correction, MSC)、卷积平滑(savitzky-golay, SG)、标准变量变换(standard normalized variate, SNV)、归一化(normalization)、基线校准(baseline)五种方法对原始光谱数据进行预处理,优选出最佳预处理方法。采用竞争性自适应重加权法(campetitive adaptive reweighted sampling, CARS)和连续投影算法(successive projections algorithm, SPA)分别提取了21个和6个特征波长。为优化模型并提高其模型精度,采用SPA算法对 CARS 所选特征波长进行二次提取,优选出14个特征波长。基于所提取的特征波长建立TVB-N浓度的PLSR模型,优选出 SNV-CARS-SPA-PLSR 模型具有较高的预测能力(R2c=0.88,RMSEC=2.51, R2p=0.65, RMSEP=2.11)。同时,建立了滩羊肉TVB-N变化与贮藏时间的动力学模型,并将优化后的光谱模型和动力学反应模型相结合建立了滩羊肉光谱吸光度值与贮藏时间的高光谱动力学模型,实现对贮藏时间的预测,并通过 PLS-DA判别模型对滩羊肉贮藏时间进行判别分析(校正集判别准确率为100%,预测集为97%)。研究表明,利用可见/近红外高光谱成像技术结合动力学和化学计量学方法以及计算机编程技术,可以有效地实现滩羊肉品质智能监控与质量安全快速无损分析,为开发实时在线检测装备提供理论参考。  相似文献   
2.
生育酚当量抗氧化能力(TEAC)是评估肌肉内源抗氧化程度的指标之一,可用于评估亲水化合物的抗氧化活性及清除自由基的能力。为探究快速检测滩羊肉中TEAC的可行性,采用可见近红外(Vis/NIR)高光谱成像技术,建立基于光谱信息融合图像纹理特征(TFS)的TEAC定量预测模型。将不同部位样本集根据3∶1的比例随机划分成校正集和预测集,在400~1 000 nm范围内采集反射光谱图像,提取每个样本图像的感兴趣区域(ROI)以获取原始光谱数据;采用中值滤波(MF)、基线校准(Baseline)、卷积平滑(S-G)和多元散射校正(MSC)四种算法对原始光谱中散射及干扰信息进行校正,并建立偏最小二乘回归(PLSR)模型,将光谱数据与TEAC值进行关联。采用间隔随机蛙跳(IRF)、变量组合集群分析(VCPA)、竞争性自适应加权抽样(CARS)和迭代变量子集优化(IVSO)算法提取TEAC浓度的特征波长。采用灰度共生矩阵(GLCM)算法对肉样的主要TFS依次进行提取。基于特征光谱及图谱融合信息建立反向传播人工神经网络(BP-ANN)和最小二乘支持向量机(LSSVM)模型,对滩羊肉中TEAC含量预测并进...  相似文献   
3.
基于NIR高光谱成像技术的长枣虫眼无损检测   总被引:5,自引:2,他引:3  
为了研究快速识别虫眼枣与正常枣的有效方法,利用特征波长主成分分析法结合波段比算法进行虫眼枣识别。首先,利用NIR高光谱成像系统采集130个长枣(50个正常、80个虫眼枣)图像,提取并分析不同类型长枣特征区域的平均光谱曲线,对970~1 670 nm范围内的光谱数据进行主成分分析,确定7个特征波长(990,1 028,1 109,1 160,1 231,1 285,1 464 nm)。然后,对长枣图像做主成分分析,选择PC2图像进行虫眼识别,虫眼与正常枣的识别率分别为67.5%、100%。为了进一步提高虫眼枣的识别率,采用波段比(R1231/R1109)对未识别的虫眼枣进行再次识别,识别率提高到90%。结果表明,基于NIR高光谱成像技术的检测方法对虫眼枣识别是可行的,同时也为多光谱成像技术应用于在线检测长枣品质提供了理论依据。  相似文献   
4.
为了研究可见-近红外(Vis-NIR)高光谱成像对滩羊肉中总酚浓度(TPC)快速检测的可行性,基于光谱信息融合图像纹理特征建立TPC含量的预测模型,实现滩羊肉中TPC含量的可视化表达。将样本集根据3∶1的比例划分成校正集和预测集,采用多元散射校正(MSC)、基线校准(Baseline)、去趋势(De-trending)、卷积平滑(S-G)、标准正态变量变换(SNV)、归一化(Normalize)等校正方法去除原始光谱中不良散射等干扰信息。通过竞争性自适应加权抽样(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩法(iVISSA)和变量组成集群分析-迭代保留信息变量(VCPA-IRIV)提取TPC浓度的代表性特征光谱。采用灰度共生矩阵(GLCM)算法依次提取肉样第1主成分图像中纹理特征。基于特征光谱及图谱融合信息建立滩羊肉中TPC含量的偏最小二乘回归(PLSR)与最小二乘支持向量机(LSSVM)预测模型并进行对比分析。结果表明,(1)利用De-trending+SNV预处理后的光谱数据建立的PLSR预测模型性能较好,其R2C=0.874 9,R2P=0.793 2;(2)采用CARS,BOSS,iVISSA和VCPA-IRIV分别提取出了23,35,57和43个特征波长,占全光谱的18.4%,28%,45.6%和16.8%;(3)采用BOSS法提取的关键性波长建立的LSSVM模型性能较好,其R2C=0.851 3,R2P=0.745 9,RMSEC=0.116 8和RMSEP=0.155 0;(4)与基于特征波长建立的预测模型相比,BOSS-ASM-ENT-CON-LSSVM模型为滩羊肉中TPC浓度的最佳图谱融合预测模型(R2C=0.850 0,R2P=0.770 9,RMSEC=0.116 0,RMSEP=0.144 7);(5)利用BOSS-PLSR简化模型将TPC浓度反演到样本的高光谱图像上,通过色彩直观化形式展现出来,实现TPC含量的可视化表达。  相似文献   
5.
可见近红外高光谱成像对灵武长枣定量损伤等级判别   总被引:1,自引:0,他引:1  
利用可见近红外(Vis-NIR)高光谱成像技术对完好和损伤等级灵武长枣进行快速识别检测。采用定量损伤装置得到损伤Ⅰ,Ⅱ,Ⅲ,Ⅳ和Ⅴ级的灵武长枣,借助高光谱成像系统采集完好长枣和损伤长枣样本高光谱图像。提取感兴趣区域(region of interest,ROI)并计算样本平均光谱值。利用光谱-理化值共生距离算法(SPXY)将420个长枣样本按3∶1的比例划分校正集315个和预测集105个。灵武长枣原始光谱建立偏最小二乘判别分析(PLS-DA)分类模型,得到校正集和预测集准确率分别为72.70%和86.67%;灵武长枣原始光谱数据采用移动平均(MA)、卷积平滑(SG)、多元散射校正(MSC)、正交信号修正(OSC)、基线校准(baseline)和去趋势(de-trending)等方法进行光谱预处理并建立PLS-DA分类判别模型。通过分析比较,得到MSC-PLS-DA为最优分类判别模型,校正集准确率为76.19%,预测集准确率为86.67%,其中校正集比原始光谱建模准确率提高了3.49%,预测集准确率较原始光谱建模结果未提高;为了提高建模效果,对灵武长枣原始光谱和预处理后的光谱分别采用连续投影算法(SPA)、无信息变量消除(UVE)、竞争性自适应加权抽样(CARS)和区间变量迭代空间收缩法(iVISSA)等算法提取特征波长,建立PLS-DA分类判别模型,结果表明,MSC-CARS-PLS-DA为最优模型组合,校正集准确率为77.14%,预测集准确率为89.52%,建模准确率较原始光谱建模准确率分别提高了4.44%和2.85%。结果表明,Vis-NIR高光谱成像技术结合MSC-CARS-PLS-DA模型可实现灵武长枣损伤等级的快速识别。  相似文献   
6.
硫代巴比妥酸反应物(TBARS)是表征肉品脂肪氧化程度的主要化学信息.为探究二维相关光谱技术(2DCOS)筛选羊肉中TBARS含量的特征变量的可行性,利用高光谱成像技术结合2DCOS分析建立TBARS含量的快速无损检测方法.采集样本在400~1000 nm的光谱反射图像,通过ENVI 4.8软件在光谱图像上手动设置感兴...  相似文献   
7.
采用可见-近红外高光谱成像技术结合化学计量学方法检测灵武长枣维生素C(VC)含量,探究一种全新的水果内部成分的快速无损检测方法。采用高效液相色谱法(HPLC)测得长枣的VC含量化学值,可见-近红外高光谱成像系统采集164个灵武长枣400~1 000 nm的高光谱图像,利用ENVI4.8软件提取图像的感兴趣区域(region of interest,ROI),计算其平均光谱,获得光谱值,将化学值与光谱值通过The UnsecramblerX 10.4软件建立模型。利用蒙特卡洛交叉验证法剔除异常值,采用光谱理化值共生距离法(sample set partitioning based on joint x-y distance,SPXY)进行样本划分以提高模型的预测性能;对光谱采用移动平滑(moving average)、中值滤波(median filter)、归一化(normalize)、基线校准(baseline)、多元散射校正(multiple scattering correction,MSC)、去趋势(detrending)和标准正态变量变换(standard normal variate,SNV)等7种方法进行预处理;为进一步减少数据量,降低维度,提高运算速度,使用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)、无信息变量消除算法(uninformative variable elimination ,UVE)和连续投影算法(successive projections algorithm,SPA)提取特征波长,以期实现以少数波段代替全波段;将全波段光谱(full spectrum,FS)以及CARS, UVE和SPA三种方法提取的特征波长分别建立偏最小二乘(partial least squares wavelength regression,PLSR)和支持向量机(support vector machine,SVM)模型,从而确定最优的建模模型。利用蒙特卡洛交叉验证法共剔除7个异常样本,采用SPXY法将剔除异常样本后的157个数据区分为校正集和预测集,校正集中样本个数为117,预测集中样本个数为40。将未经光谱预处理的建模结果与分别经过七种光谱预处理的建模结果相比,选择未经光谱预处理的数据进行后续分析;将未经光谱预处理的光谱值采用CARS,UVE,SPA方法进行提取特征波长,CARS共优选出406,415,487,631,636,655,660,665,670,684,689,694,723,732,747和881 nm下的光谱变量16个,利用CARS提取出的特征波长占总波长的12.8%;UVE共优选出406,415,627,631,636,651,655,660,665,670,675,679,684,689,694,699,703,708,742,747,751,756,761,766,771,775,780,785,790,795,919和924 nm下的32个特征波长,利用UVE提取出的特征波长占总波长的25.6%;SPA共优选出401,665,684 nm三个特征波长,利用SPA提取出的特征波长占总波长的2.4%。将全波段光谱与提取出的特征波长建立PLSR模型和SVM模型,对比模型结果显示UVE-SVM模型最优,其R2c为0.847 1,R2p为0.714 9,说明UVE有效地对光谱进行降维,简化了数据处理过程。本研究对高光谱成像技术在水果领域的应用进行了有益探索,探究了一种全新的灵武长枣VC含量的无损检测方法,相应建立的可见-近红外高光谱模型为其他水果成分的快速检测提供了理论基础。  相似文献   
8.
高光谱成像技术是一种将成像与光谱相结合的新型无损检测技术,属于间接分析方法;光谱模型的建立非常关键,需综合考察各建模因素间的交互作用。应用Box-Behnken法设计响应面试验优化冷鲜滩羊肉蛋白质含量的可见/近红外高光谱定量检测模型。使用可见/近红外高光谱成像系统采集冷鲜滩羊肉样本的高光谱图像,分析肉样反射光谱特性。采用二维相关光谱技术(2DCOS),以冷鲜滩羊肉中蛋白质含量为“外界扰动”,研究扰动条件下光谱信号的动态变化,解析二维相关光谱谱图特征,寻找与微扰相关的敏感变量。分别采用多元散射校正(multiplicative scatter correction,MSC)和标准正态变量变换(standard normalized variate,SNV)提取有用信号,优化所选特征波段光谱质量。为实现数据快速降维,减少大量光谱数据处理负担,采用变量组合集群分析法(variable combination population analysis,VCPA)和应用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)对2DCOS范围内特征波段进行二次优选。根据Design-Expert软件中Box-Behnken法设计响应面试验,以特征优选、光谱预处理及多元校正方法为考察因素,各因素中3种不同方法为水平,建立冷鲜滩羊肉蛋白质含量分析的优化检测体系。结果表明,波长473,679,734和814 nm处存在较强的自相关峰,473~814 nm范围内的特征波段为冷鲜滩羊肉蛋白质检测的敏感区域;MSC和SNV能够消除肉样自身散射作用的干扰,CARS和VCPA对特征波段进行二次优选,分别优选出了16和9个特征波长;各因素对蛋白质可见/近红外光谱模型预测性能的影响顺序为特征优选方法>预处理方法>多元校正方法,优选出2DCOS-SNV-LSSVM模型具有较高的运行速率和预测能力,其Rc=0.858 8,RMSEC=0.005 8;Rp=0.860 4,RMSEP=0.005 7。研究表明,Box-Behnken法在可见/近红外高光谱(400~1 000 nm)建模参数优化选择中的应用,可以有效地实现滩羊肉品质智能监控与质量安全快速无损分析,为分析对象光谱模型的优化及提高预测结果的准确性提供理论参考。  相似文献   
9.
利用高光谱成像技术与二维相关光谱(2D-COS)结合化学计量学检测灵武长枣半纤维素含量。采用定量瘀伤装置获得0,Ⅰ,Ⅱ,Ⅲ,Ⅳ级瘀伤长枣模型,通过高光谱和分光光度计分别获得样品高光谱图像和半纤维素含量。蒙特卡洛异常值检测法剔除异常样本后,分别用随机划分法(RS),Kennard-Stone法(KS)、光谱-理化值共生距离法(SPXY)和3∶1比例法对样本集划分校正预测。采用基线校准(Baseline)、去趋势(De-trending)和标准化(Normalize)对长枣原始光谱预处理后建立偏最小二乘回归模型(PLSR),优选最佳样本集划分及预处理方法。利用2D-COS将光谱信号扩展到第2维,在全光谱范围内寻找与半纤维素含量相关的敏感波段区间。采用竞争性自适应加权算法(CARS)、引导软收缩(BOSS)、区间变量迭代空间收缩方法(iVISSA)、变量组合集群分析法(VCPA)以及iVISSA+BOSS,iVISSA+CARS和iVISSA+VCPA方法在2D-COS敏感波段区间进行特征波长提取,并建立基于特征波长的PLSR模型。结果表明,样本集经3∶1划分和Baseline预处理后建立的基于全波段的PLSR模型最优,故最佳样本集划分方法为3∶1,预处理方法为Baseline,用于后续特征波长提取。通过2D-COS分析发现3个与半纤维素相关的自相关峰(401,641和752 nm);在2D-COS敏感区域(401~752 nm范围内),采用BOSS,CARS,iVISSA,VCPA,iVISS+BOSS,iVISS+CARS,iVISS+VCPA分别提取了14,26,39,12,15,22和11个对应的特征波长,占总波长的18.9%,35.1%,52.7%,16.2%,20.2%,29.7%和14.8%。对比2D-COS和特征波建立的PLSR模型,2D-COS+iVISSA-PLSR模型效果较好,其R2C=0.747 9,R2P=0.604 7,RMSEC=0.043 8,RMSEP=0.060 3。研究表明,利用高光谱成像技术结合2D-COS可实现灵武长枣半纤维素含量的快速检测。  相似文献   
10.
为了比较4℃、15℃两种贮藏温度下滩羊肉pH值的变化,优选出滩羊肉贮藏期间的最优模型,采用pH酸度计测量样本pH值,建立两种贮藏温度下传统动力学的零级和一级模型;应用近红外(900~1 700 nm)高光谱成像采集两种贮藏温度下滩羊肉的光谱数据,剔除异常值后进行光谱预处理;使用连续投影算法(SPA)提取特征波长,建立全波段和特征波长的偏最小二乘(PLSR)预测模型;对比分析得到的最优光谱模型与动力学模型相结合,确定滩羊肉光谱动力学模型。结果表明,4℃和15℃的传统动力学模型的相关系数分别为0.502和0.912;4℃下原始光谱经PLSR建模后效果最优,相关系数R_c为0.821,R_p为0.863,15℃经SG-S(3,7)+De-trending(4)预处理后经PLSR建模效果最优,相关系数R_c为0.876,R_p为0.819。因此,高光谱结合传统动力学的模型检测羊肉pH值的方法是可行的,该模型可以预测15℃下滩羊肉的贮藏期。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号