首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Kim HW  Cho SH  Kim YY 《Ultrasonics》2011,51(6):647-652
Recently, megahertz-range torsional waves have been successfully generated and measured by a magnetostrictive patch transducer employing a meander coil. But the waveform of a high-frequency torsional wave generated by magnetostrictive patch transducers becomes greatly distorted with multiple trailing pulses. The hypothesis explaining the cause of the waveform distortion is that the distortion results mainly from the internal wave reflection within the magnetostrictive patch, which is in turn caused by the impedance mismatch between the bare and patch-bonded parts of the pipe. Based on the hypothesis, we developed an analytic model for internal reflection simulation and conducted several experiments using a patch transducer to verify the hypothesis. The comparison of the analytical and experimental results showed that the internal reflection at the edge of the patch was responsible for the distortion of the measured waveform. The present study also confirmed that the standard acoustic impedance matching to avoid sudden discontinuities at the patch edges can effectively reduce the internal reflection and alleviate the waveform distortion problem.  相似文献   

2.
Cheong YM  Lee DH  Jung HK 《Ultrasonics》2004,42(1-9):883-888
The dispersion curves for the feeder pipes in PHWR nuclear power plants were determined. The wave modes used for the detection of notches in the feeder pipe were confirmed as F(m,2) and/or L(0,1) by an analysis of short time Fourier transformation (STFT). The axial notches in the straight pipe were not detectable, but an axial notch in a bent pipe was detected with the mode at the frequency of 500 kHz. Initial F(m,2) and/or L(0,1) modes contains a circumferential displacement and might be converted to certain complicated modes in the bent region, which is sensitive to the axial notch. The circumferential guided wave technique was also applied for quantitative evaluation of the axial notches. The waves generated by a rocking motion of the transducer along the circumferential direction were estimated as the circumferential guided waves after a review of the acquired data and the dispersion curves.  相似文献   

3.
理论和实验上研究了层析成像在管道结构导波检测中的适用性。在管的两个圆周带上分别布置发射和接收换能器,形成多点发射-多点接收的几何结构。将管中绕管道沿最短路径的螺旋方向到达接收换能器的模式作为感兴趣的模式,它们看起来像在弯曲的板中传播,称之为类兰姆波模式。给出了类兰姆波各射线路径走时的理论计算方法,并采用联合迭代重建技术(SIRT)对走时数据进行慢度图像重建。数值模拟和实验研究了管中横穿孔缺陷层析成像的输出并对健康管和缺陷管中类兰姆波的走时数据进行比较,发现穿过缺陷区域的类兰姆波因为绕过缺陷传播而呈现出更长的走时。文中也给出了两缺陷管道类兰姆波层析成像的数值模拟和实验结果,相比单缺陷的情况,射线较少穿过区域缺陷的重建图像质量下降。研究结果为采用类兰姆波模式进行管道缺陷无损评价提供了理论依据。   相似文献   

4.
Guided wave phased array focusing has shown many advantages in long-range pipeline inspection, such as, longer inspection distance, greater wave penetration power and higher detection resolution. Viscoelastic coatings applied to a large percentage of pipes for protection purposes created some challenges in terms of focusing feasibility and inspection ability. Previous studies were all based on bare pipe models. In this work, guided wave phased array focusing in viscoelastic coated pipes is studied for the first time. Work was carried out with both numerical and experimental methods. A three-dimensional finite element model was developed for quantitatively and systematically modeling guided waves in pipes with different viscoelastic materials. A method of transforming measured coating properties to finite element method inputs was created in order to create a physically based model of guided waves in coated pipes. Guided wave focusing possibilities in viscoelastic coated pipes and the effects from coatings were comprehensively studied afterwards. A comparison of focusing and nonfocusing inspections was also studied quantitatively in coated pipe showing that focusing increased the wave energy and consequently the inspection ability tremendously. This study provides an important base line and guidance for guided wave propagation and focusing in a real field pipeline under various coating and environmental conditions.  相似文献   

5.
Yibo L  Liying S  Zhidong S  Yuankai Z 《Ultrasonics》2006,44(Z1):e1111-e1116
Ultrasonic guided wave is introduced as a new non-destructive long range pipe inspection method. It can be used to inspect pipe which is inaccessible to other conventional NDT methods, and rapid, long distance inspection can be achieved. An investigation of the guided ultrasonic waves traveling along pipe with special geometry characteristics, such as elbow, several girth welds, and some artificial defects is described. In this paper, factors that may cause attenuation of ultrasonic guided waves are discussed and energy attenuation of longitudinal and torsional guided waves is studied on an experimental pipe having seven girth welds. Good agreement has been obtained between the experiments and the predictions. In the end, the detection sensitivity and locating precision of two guided waves, namely longitudinal and torsional, were compared on defects, such as notch, burr and branch.  相似文献   

6.
Li J  Rose JL 《Ultrasonics》2006,44(1):35-45
The propagation of non-axisymmetric guided waves in larger diameter pipes is studied in this paper by treating the guided waves as corresponding Lamb waves in an unwrapped plate. This approximation leads to a simpler method for calculating the phase velocities of hollow cylinder guided waves, which reveals a beam focusing nature of non-axisymmetric guided waves generated by a partial source loading. The acoustic fields in a pipe generated by a partial-loading source includes axisymmetric longitudinal modes as well as non-axisymmetric flexural modes. The circumferential distribution of the total acoustic field, also referred as an angular profile, diverges circumferentially while guided waves propagate with dependence on such factors as mode, frequency, cylinder size, propagation distance, etc. Exact prediction of the angular profile of the total field can only be realized by numerical calculations. In particular cases, however, when the wall thickness is far less than the cylinder diameter and the wavelength is smaller than or comparable to the pipe wall thickness, the acoustic field can be analyzed based on the characteristics of Lamb waves that travel along a periodic unwrapped plate. Based on this assumption, a simplified model is derived to calculate the phase velocities of non-axisymmetric flexural mode guided waves. The model is then applied to discussions on some particular characteristics of guided-wave angular profiles generated by a source loading. Some features of flexural modes, such as cutoff frequency values are predicted with the simpler model. The relationship between the angular profiles and other factors such as frequency, propagation distance, and cylinder size is obtained and presented in simple equations. The angular profile rate of change with respect to propagation distance is investigated. In particular, our simplified model for non-axisymmetric guided waves predicts that the wave beam will converge to its original circumferential shape after the wave propagates for a certain distance. A concept of "natural focal point" is introduced and a simple equation is derived to compute the 1st natural focal distance of non-axisymmetric guided waves. The applicable range of the simplified equation is provided. Industrial pipes meet the requirement of wall thickness being far less than the pipe diameter. The approximate analytical algorithms presented in this paper provides a convenient method enabling quick acoustic field analysis on large-diameter industrial pipes for NDE applications.  相似文献   

7.
A theory of propagation of torsional waves excited by an electromagnetic–acoustic transducer in a pipe is proposed. This theory takes into account the excitation parameters, geometry, viscosity, and the elastic characteristics of an object. The main testing parameters (the frequency and geometry of the transducer) that determine the possibilities of guided-wave testing of pipelines of various dimensions using torsional waves are theoretically substantiated.  相似文献   

8.
The pipe bend significantly changes the propagation characteristics of guided wave,and makes the interpretation of the received signals difficult.Therefore,better understanding of guided wave propagating in bended pipe is essential for the inspection of pipeline comprising bends.First of all,the different features of dispersion curves derived with the semi-analytical finite element method for guided wave in bended pipes are summarized.Secondly,based on the dispersion curves for guided wave in bended pipes,experiments are performed to investigate the mode conversions of L(0,1) mode guided wave traveling through pipe bends.It is found that,except for the mode conversion from L(0,1) to F(1,1),the L(0,1) reflections of bends are also observed in some cases,which are proven to be the mode converted negative L(0,1)mode guided wave,and the negative L(0,1) mode guided wave becomes more obvious with the decrease of excitation frequency and bending radius.The findings of this paper will provide some insight for guided wave behavior in bended pipe,and generalize the application of guided wave inspection in practical pipelines.  相似文献   

9.
Liu Z  He C  Wu B  Wang X  Yang S 《Ultrasonics》2006,44(Z1):e1135-e1138
Different kinds of defects, such as corrosions, notches and cracks etc, exist in pipes. Mode choice is important since unfortunately not all ultrasonic guided wave modes are suitable for these kinds of defect detection. T(0,1) mode which is non-dispersive is the lowest and fastest torsional mode and most suitable for defect detection in pipes. Two completely different artificial defects including longitudinal and circumferential defects are processed successively in a 4-m-long, 60-mm-OD, 3.5-mm-wall steel pipe. T(0,1) mode at 45 kHz is excited to detect these defects using thickness shear mode piezoelectric elements. Experimental results show that two kinds of defects are detectable using T(0,1) mode. Comparing with longitudinal modes, torsional modes are dominant in pipe inspection for their sensitivities to different kinds of defects.  相似文献   

10.
Propagation phenomena of wideband guided waves in a bended pipe   总被引:1,自引:0,他引:1  
Nishino H  Yoshida K  Cho H  Takemoto M 《Ultrasonics》2006,44(Z1):e1139-e1143
Ultrasonic guided waves in pipes have been anticipated as a rapid screening technique for pipe inspection because of their long-range propagation due to low energy leakage. In this paper, the propagation phenomena of guided waves in a bended pipe were investigated using a wideband laser ultrasonic system. The laser ultrasonic system, together with wavelet transformation, is a powerful tool for observing the dispersive phenomena intrinsic to guided waves. Bended stainless steel (SUS304) pipes with 6-mm outer diameter and 1-mm wall thickness were used in the experiments. The bending angles of the pipes were set to 0 degrees (straight pipe), 10 degrees, 30 degrees, 60 degrees and 90 degrees. The radius of the bend was 12.5 mm in all the pipes. A Q-switched Nd:YAG laser was employed to generate the guided waves. The generated guided waves were detected with a heterodyne interferometer. The obtained time-domain signals and their wavelet coefficients indicated the following two conclusions: (1) The amplitude of the F(1,1) mode converted from the L(0,1) mode increased with the increase of the bending angle. (2) Mode conversions from the L(0,1) to F(1,1) modes and vice versa were clearly observed in the low-frequency range up to around 200 kHz.  相似文献   

11.
The use of ultrasonic guided waves for the inspection of pipes with elbow and U-type bends has received much attention in recent years, but studies for more general bend angles which may also occur commonly, for example in cross-country pipes, are limited. Here, we address this topic considering a general bend angle φ, a more general mean bend radius R in terms of the wavelength of the mode studied and pipe thickness b. We use 3D Finite Element (FE) simulation to understand the propagation of fundamental axisymmetric L(0, 2) mode across bends of different angles φ. The effect of the ratio of the mean bend radius to the wavelength of the mode studied, on the transmission and reflection of incident wave is also considered. The studies show that as the bend angle is reduced, a progressively larger extent of mode-conversion affects the transmission and velocity characteristics of the L(0, 2) mode. However the overall message on the potential of guided waves for inspection and monitoring of bent pipes remains positive, as bends seem to impact mode transmission only to the extent of 20% even at low bend angles. The conclusions seem to be valid for different typical pipe thicknesses b and bend radii. The modeling approach is validated by experiments and discussed in light of physics of guided waves.  相似文献   

12.
管道弯头对低频纵向导波传播特性影响分析   总被引:1,自引:0,他引:1       下载免费PDF全文
管道弯头显著改变了导波传播特性,影响了对检测信号的解读,研究弯头对导波传播特性的影响是实现复杂管道系统导波检测的基础。采用半解析有限元法计算弯管导波频散曲线,分析了弯管导波频散曲线所呈现的不同特征,并基于弯管导波频散曲线,以低频L(0,1)模态导波为研究对象,实验研究了低频L(0,1)模态导波通过管道弯头时的模态变换特征。研究结果发现,当L(0,1)模态导波通过管道弯头时,不仅会发生L(0,1)到F(1,1)的模态变换,还会模态变换出反向L(0,1)模态导波,即弯头反射现象,且随着激励频率的降低和弯头弯曲半径的减小,弯头反射现象愈发明显。研究结果将深化对弯管导波传播特性的认识,推动导波检测技术在复杂管道系统检测中的应用。   相似文献   

13.
Focusing is one of the most promising techniques for the detection of small defects in pipe works, in which guided waves including longitudinal and flexural modes are tuned so that ultrasonic energy can be focused at a target point in a pipe, and analysis of reflected waves gives information on defects such as location and size. In this paper, the focusing technique is discussed by way of a simulation of guided wave propagation in pipe by a semianalytical finite element method (SAFE). Experiments and SAFE calculations were compared for waveforms transmitted by a single transducer and received at different circumferential positions initially, and then the focusing phenomena were experimentally observed using focusing parameters obtained by calculations. Calculation and visualization were conducted to clarify focusing phenomena in pipe in investigating the potential of the focusing technique. These results show that the time-reversal idea helps in understanding focusing and that resolution of focusing is strongly affected by incident waveforms as well as the number of channels available in an experiment.  相似文献   

14.
Guided wave helical ultrasonic tomography of pipes   总被引:1,自引:0,他引:1  
Ultrasonic guided waves have been used for a wide variety of ultrasonic inspection techniques. We describe here a new variation called helical ultrasound tomography (HUT) that uses guided ultrasonic waves along with tomographic reconstruction algorithms that have been developed by seismologists for what they call "cross borehole" tomography. In HUT, the Lamb-like guided waves travel the various helical criss-cross paths between two parallel circumferential transducer arrays instead of the planar criss-cross seismic paths between two boreholes. Although the measurement itself is fairly complicated, the output of the tomographic reconstruction is a readily interpretable map of a quantity of interest such as pipe wall thickness. In this paper we demonstrate HUT via laboratory scans on steel pipe segments into which controlled thinnings have been introduced.  相似文献   

15.
Successful ultrasonic guided wave detection of flaws at support locations relies on the ability to distinguish between the reflection produced by a simple support on an undamaged pipe and the reflection produced by pipe flaws. Consequently, it is essential to know how the reflections produced by simple supports behave; very little work has so far been reported on this subject. Through finite element simulations and experiments, this study develops a systematic understanding of how ultrasonic guided waves propagating along a pipe, in particular the T(0, 1) mode, interact with simple supports. It is shown that, unlike the T(0, 1) mode in a free pipe, the torsional mode in a supported region has a cut-off frequency, below which it will not propagate; below this frequency the T(0, 1) reflection coefficient is large, and it quickly reduces beyond the cut-off.  相似文献   

16.
Guo X  Zhang D  Zhang J 《Ultrasonics》2012,52(7):912-919
Localization of fatigue-related micro-cracks in pipelines is of increasing importance in industrial applications. A three-dimensional (3D) fatigue-crack imaging technique combining nonlinear guided waves with time reversal is proposed in this paper for potential applications in pipeline inspections. By using this method, the non-classical nonlinear guided waves generated from micro-cracks with hysteretic behavior are recorded, and the third harmonic waves are used to reconstruct the fatigue-crack images in a pipe by using a time reversal (TR) process. The feasibility of this method is examined by the imaging simulations for a steel pipe with varied defect areas. A finite-difference time-domain (FDTD) code is programmed to solve the wave equations under cylindrical coordinates, and simulate the experimental process of wave propagation. The results show that: (1) the proposed technique has excellent spatial retrofocusing capability; (2) the accuracy of defect localization and sizing depends on the crack orientation and the adopted guided wave mode; and (3) different displacement/stress components have varied sensitivities to the crack orientation.  相似文献   

17.
长骨中振动声激发超声导波的方法   总被引:1,自引:0,他引:1       下载免费PDF全文
刘珍黎  宋亮华  白亮  许凯亮  他得安 《物理学报》2017,66(15):154303-154303
为了实现一定频段内任意低频下在长骨中激励导波信号,本文提出一种采用聚焦高频(5 MHz)超声换能器在长骨皮质骨中激发低频(150 kHz)超声导波的振动声方法.首先介绍了板状超声导波理论和双声束共聚焦法与单声束调幅法激发振动声的基本原理;进而采用三维有限元仿真方法分析振动声激发低频超声导波的基本现象,然后结合牛胫骨板离体实验,验证振动声激发低频超声导波的可行性.结果均表明,双声束共焦与单声束振动超声均可在骨板中激发低频超声导波.相关研究方法有助于提高空间域长骨中超声导波测量精度,以及在一定频段内实现任意频率激励等,对发展低频超声导波在体测量长骨皮质骨的新技术具有一定的指导意义.  相似文献   

18.
Ultrasonic guided wave focusing by a generalized phased array is studied based on dispersion curves in a multi-layered medium. The different phase of the guided waves with different frequency is added on the excitation signal on each element of the transducer array for focusing. This can be realized by designing a proper excitation pulse based on the dispersion curves of the guided waves for each of the transducer array elements. The numerical simulation results show that the guided waves with different modes, different frequency components, and from different elements of the transducer array can all be focused at the target and focusing is achieved.  相似文献   

19.
Corrugated pipes are commonly used because of their local rigidity combined with global flexibility. The flow through such a pipe can induce strong whistling tones, which is an environmental nuisance and can be a threat to the mechanical integrity of the system. This paper considers the use of a composite pipe: a shorter corrugated pipe segment embedded between smooth pipe segments. Such a pipe retains some flexibility, while the acoustical damping in the smooth pipe reduces whistling tones. Whistling is the result of coherent vortex shedding at the cavities in the wall. This vortex shedding is synchronized by longitudinal acoustic waves traveling along the pipe. The acoustic waves trigger the vortex shedding, which reinforces the acoustic field for a critical range of the Strouhal number values. A linear theory for plane wave propagation and the sound production is proposed, which allows a prediction of the Mach number at the threshold of whistling in such pipes. A semi-empirical approach is chosen to determine the sound source in this model. This source corresponds to a fluctuating force acting on the fluid as a consequence of the vortex shedding. The functional form of the Strouhal number dependency of the dimensionless sound source amplitude is based on numerical simulations. The magnitude of the source and the Strouhal number range in which it can drive whistling are determined by matching the model to results for a specific corrugated pipe segment length. This semi-empirical source model is then applied to composite pipes with different corrugated segment lengths. In addition, the effect of inlet acoustical convective losses due to flow separation is considered. The Mach number at the threshold of whistling is predicted within a factor 2.  相似文献   

20.
Propagation of free harmonic waves, in a periodically supported infinite pipe, has been studied. The presence of the Coriolis term in the equation of motion renders the phase velocity different for the positive and the negative going waves. Hence no classical normal modes (in the sense of standing modes) exist. Natural frequencies of a periodically supported finite pipe have been obtained by using the wave approach. The response of the infinite pipe to a convected harmonic pressure field has also been obtained. Owing to the difference in the phase velocities of the positive and the negative going free waves, the coincidence frequency depends on the direction of the convected loading. The static buckling or the divergence instability of such pipes has also been considered from the wave approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号