首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cai-feng Wang  Bo Hu  Hou-hui Yi 《Optik》2012,123(12):1040-1043
ZnS and ZnO films were prepared on porous silicon (PS) substrates with the same porosity by pulsed laser deposition (PLD), and the structural, optical and electrical properties of ZnS and ZnO films on PS were investigated at room temperature by X-ray diffraction (XRD), scanning electron microscope (SEM), optical absorption measurement, photoluminescence (PL) and I–V characteristic studies. The prepared ZnS was obtained in the cubic phase along β-ZnS (1 1 1) orientation which showed a perfect match with the earlier report while ZnO films were obtained in c-axis orientation. There appeared some cracks in the surface of ZnS and ZnO films due to the roughness of PS substrates. Luminescence studies of ZnS/PS and ZnO/PS composites indicated room temperature emission in a broad, intense, visible photoluminescence band, which cover the blue emission to red emission, exhibiting intensively white light emission. Based on the I–V characteristic, ZnS/PS heterojunction exhibited the rectifying junction behavior, while the I–V characteristic of ZnO/PS heterostructure was different from that of the common diode, whose reverse current was not saturated.  相似文献   

2.
多孔硅蓝光发射与发光机制   总被引:5,自引:0,他引:5       下载免费PDF全文
在制备出光致发光能量为2.7eV的发射蓝光多孔硅的基础上对它进行了较系统的研究:测量了它的光致发光时间分辨光谱,用傅里叶交换红外光谱分析了其表面吸附原子的局域振动模,研究了γ射线辐照对其发光的影响,并与发红、黄光的多孔硅作了对比,通过空气中长期存放、激光和紫外线照射的方法,研究了光致发光峰能量为2.7eV的多孔硅发光稳定性.我们及其它文献中报道的多孔硅蓝光发射的实验结果与量子限制模型矛盾,但能用量子限制/发光中心模型解释.我们认为多孔硅的2.7eV发光是多孔硅中包裹纳米硅的SiOx层中某种特征发光中心引起的. 关键词:  相似文献   

3.
Photoluminescence of porous silicon (PS) is instable due perhaps to the nanostructure modification in air. The controllable structure modification processes on the as-prepared PS were conducted by thermal oxidization and/or HF etching. The PL spectra taken from thermally oxidized PS showed a stable photoluminescence emission of 355 nm. The photoluminescence emission taken from both of PS and oxidized porous silicon (OPS) samples etched with HF were instable, which can be reversibly recovered by the HF etching procedure. The mechanism of UV photoluminescence is discussed and attributed to the transformation of luminescence centers from oxygen deficient defects to the oxygen excess defects in the thermal oxidized PS sample and surface absorbed silanol groups on PS samples during the chemical etched procedure.  相似文献   

4.
A new method has been developed to improve the photoluminescence intensity of porous silicon (PS), which is first time that LiBr is used for passivation of PS. Immersion of the PS in a LiBr solution, followed by a thermal treatment at 100 °C for 30 min under nitrogen, leads to a nine fold increase in the intensity of the photoluminescence. The atomic force microscope (AFM) shows an increase of the nanoparticle dimension compared to the initial dimension of the PS nanostructure. The LiBr covers the nanoparticles of silicon without changing the wavelength distribution of the optical excitation and emission spectra. Moreover, a significant decrease of reflectivity was observed for the wavelength in the range of 350-500 nm.  相似文献   

5.
The photoluminescence and reflectance of porous silicon (PS) with and without hydrocarbon (CHx) deposition fabricated by plasma enhanced chemical vapour deposition (PECVD) technique have been investigated. The PS samples were then, annealed at temperatures between 200 and 800 °C. The influence of thermal annealing on optical properties of the hydrocarbon layer/porous silicon/silicon structure (CHx/PS/Si) was studied by means of photoluminescence (PL) measurements, reflectivity and ellipsometry spectroscopy. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy. Photoluminescence and reflectance measurements were carried out before and after annealing on the carbonized samples for wavelengths between 250 and 1200 nm. A reduction of the reflectance in the ultraviolet region of the spectrum was observed for the hydrocarbon deposited polished silicon samples but an opposite behaviour was found in the case of the CHx/PS ones. From the comparison of the photoluminescence and reflectance spectra, it was found that most of the contribution of the PL in the porous silicon came from its upper interface. The PL and reflectance spectra were found to be opposite to one another. Increasing the annealing temperature reduced the PL intensity and an increase in the ultraviolet reflectance was observed. These observations, consistent with a surface dominated emission process, suggest that the surface state of the PS is the principal determinant of the PL spectrum and the PL efficiency.  相似文献   

6.
ZnS films were deposited on porous silicon (PS) substrates with different porosities by pulsed laser deposition (PLD). The crystalline structure, surface morphology of ZnS films on PS substrates and optical, electrical properties of ZnS/PS composites were studied. The results show that, ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction corresponding to crystalline structure of cubic phase. With the increase of PS porosity, the XRD diffraction peak intensity of ZnS films decreases. Some voids and cracks appear in the films. Compared with as-prepared PS, the PL peak of PS for ZnS/PS has a blueshift. The larger the porosity of PS, the greater the blueshift is. A new green light emission located around 550 nm is observed with increasing PS porosity, which is ascribed to defect-center luminescence of ZnS. The blue, green emission of ZnS combined with the red emission of PS, a broad photoluminescence band (450–750 nm) is formed. ZnS/PS composites exhibited intense white light emission. The I–V characteristics of ZnS/PS heterojunctions showed rectifying behavior. Under forward bias conditions, the current density is large. Under reverse bias conditions, the current density nearly to be zero. The forward current increases with increasing PS porosity. This work lay a foundation for the realization of electroluminescence of ZnS/PS and solid white light emission devices.  相似文献   

7.
We observe that light soaking for short durations and thermal quenching in nanocrystalline porous silicon (PS) produce metastable states. These metastable states show higher dark and photo currents, large photoluminescence and a weaker electron spin resonance (ESR) signal. However, long exposures to light produce the opposite effect. The metastable states are stable against sub-band gap light exposures. These metastable states can be removed by annealing at 150°C for 1 h. ESR shows the presence of a-Si phase (g ~ 2.0058, 6.4 G) in PS sample, but it is not sufficient to explain all the experimental results. Rather, our experiments suggest that light soaking causes more than one type of defects in porous silicon. The structural changes involving the movement of hydrogen present at the surface of PS or at the PS/a-Si interface may be responsible for these effects.  相似文献   

8.
We report the optical properties of Nd-incorporated porous silicon. Photoluminescence and photoluminescence excitation measurements have been performed. Room temperature emission spectra from dried or annealed samples have been studied. While steady-state photoluminescence results indicate porous silicon light absorption by the Nd, the photoluminescence excitation shows a deficiency of energy transfer between porous silicon and Nd ions.  相似文献   

9.
In this work, we present results for Cerium (Ce) doping effects on photoluminescence (PL) properties of porous silicon (PS). Cerium was deposited using electrochemical deposition on porous silicon prepared by electrochemical anodization of P-type (100) Si. From the photoluminescence spectroscopy, it was shown that porous silicon treated with cerium can lead to an increase of photoluminescence when they are irradiated by light compared to the porous silicon layer without cerium. In order to understand the contribution of cerium to the enhanced photoluminescence, energy dispersive X-ray (EDX) spectroscopy, Fourier transmission infrared spectroscopy (FTIR), X-ray diffraction (XRD) and atomic force microscopy (AFM) were performed, and it was shown that the improved photoluminescence may be attributed to the change of Si–H bonds into Si–O–Ce bonds and to a newly formed PS layer during electrochemical Ce coating.  相似文献   

10.
The decrease in luminescence from host porous silicon (PS) by thermal annealing prevents the optical activation of Er ions. We prepared a SiN layer on erbium-doped porous silicon (PS : Er) as the capping layer by photo-chemical vapor deposition (photo-CVD). After deposition of SiN, the sample was annealed in pure Ar atmosphere for optical activation. We observed an Er-related emission at 1532 nm with a full-width at half-maximum (FWHM) of 10 nm at 18 K from the sample with the SiN layer. In contrast, no emission was observed from the sample without the SiN layer. At 300 K, the peak intensity of Er3+-related photoluminescence (PL) for the sample annealed at 1100°C decreased to 40.0% of that observed at 18 K. From these results, it was found that the SiN layer on PS:Er is useful for both host PS and Er-related 1.5 μm luminescences.  相似文献   

11.
用脉冲激光沉积(PLD)的方法在多孔硅衬底上沉积了ZnS薄膜,并在室温下研究了ZnS/PS异质结的结构、光学和电学性质。X射线衍射仪(XRD)测量结果表明.制备的ZnS薄膜在28.5°附近有一较强的衍射峰,对应于β-ZnS(111)晶向,说明薄膜沿该方向高度择优取向生长。ZnS/PS复合体系的光致发光谱表明,ZnS的发光与PS的发光叠加在一起,在可见光区形成一个450-700nm较宽的光致发光谱带。呈现较强的白光发射。对ZnS/PS异质结I-V,特性曲线的测量结果表明,异质结呈现出与普通二极管相似的整流特性。在正向偏置下,电流密度较大.电压降较低;在反向偏置下,电流密度接近于零。异质结的理想因子的值为77。  相似文献   

12.
周咏东  金亿鑫 《光子学报》1996,25(5):451-455
本文报道了利用离子注入技术制备多孔硅中Er3+的1.54μm光发射发光材料的实验,并对样品的低温光致发光特性进行了实验研究。实验表明多孔硅中的Er3+发光与单晶硅中的Er3+发光(同样注入条件,退火工艺制备)相比,发光强度有成数量级的提高,同时发光峰更宽,伴线更丰富。  相似文献   

13.
The influence of surface treatment of porous silicon (PS) in lanthanum (La) containing solution during different times on its photoluminescence and electrical properties has been investigated. For this purpose, chemical composition, structural, vibrational, photoluminescence and electrical characteristics of the porous silicon layer with and without lanthanum were examined using X-ray diffractometry (XRD), energy dispersive X-ray (EDX) spectroscopy, Fourier transmission infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy and current–voltage (IV) measurements. The results indicate that porous silicon layers treated with lanthanum exhibit an enhancement of photoluminescence intensity and show an improvement current intensity compared to untreated porous silicon layer.  相似文献   

14.
A porous silicon (PS) layer was prepared by photoelectrochemical etching (PECE), and a zinc oxide (ZnO) film was deposited on a PS layer using a radio frequency (RF) sputtering system. The surface morphology of the PS and ZnO/PS layers was characterised using scanning electron microscopy (SEM). Nano-pores were produced in the PS layer with an average diameter of 5.7 nm, which increased the porosity to 91%. X-ray diffraction (XRD) of the ZnO/PS layers shows that the ZnO film is highly oriented along the c-axis perpendicular to the PS layer. The average crystallite size of the PS and ZnO/PS layers are 17.06 and 17.94 nm, respectively. The photoluminescence (PL) emission spectra of the ZnO/PS layers present three emission peaks, two peaks located at 387.5 and 605 nm due to the ZnO nanocrystalline film and a third located at 637.5 nm due to nanocrystalline PS. Raman measurements of the ZnO/PS layers were performed at room temperature (RT) and indicate that a high-quality ZnO nanocrystalline film was formed. Optical reflectance for all the layers was obtained using an optical reflectometer. The lowest effective reflectance was obtained for the ZnO/PS layers. The fabrication of crystalline silicon (c-Si) solar cells based on the ZnO/PS anti-reflection coating (ARC) layers was performed. The IV characteristics of the solar cells were studied under 100 mW/cm2 illumination conditions. The ZnO/PS layers were found to be an excellent ARC and to exhibit exceptional light-trapping at wavelengths ranging from 400 to 1000 nm, which led to a high efficiency of the c-Si solar cell of 18.15%. The ZnO/PS ARC layers enhance and increase the efficiency of the c-Si solar cell. In this paper, the fabrication processes of the c-Si solar cell with ZnO/PS ARC layers are an attractive and promising technique to produce high-efficiency and low-cost of c-Si solar cells.  相似文献   

15.
多孔硅的后处理及其发光特性   总被引:5,自引:4,他引:1       下载免费PDF全文
采用一种新颖而简便的方法,改善多孔硅的发光特性。该方法包括酸处理和阴极还原两步。实验证明通过对多孔硅进行酸处理,能有效提高多孔硅的发光强度;通过对多孔硅进行阴极还原处理,能明显改善多孔硅的发光稳定性,而且发光强度也得到了提高。综合酸处理和阴极还原两技术的特点,对所制备的多孔硅立即先进行酸处理,然后再对其进行阴极还原处理,结果表明该方法能较好地提高多孔硅的发光效率和发光稳定性。而且还对其发光机制进行了探讨。  相似文献   

16.
The structural, electrical and optical characteristics of porous silicon (PS) due to the impregnation of LaF3 into PS by a novel chemical-bath deposition (CBD) technique have been investigated in this article. Without removing the PS from the anodization chamber the impregnation with LaF3 has been done by reacting LaCl3 with HF in the same chamber at room temperature. The impregnation of LaF3 was confirmed by the SEM on the cross-section of the LaF3/PS/Si system and EDX. The modification of PS surface by LaF3 had direct influence on the electrical and optical properties of PS. Electrical properties of Ag/LaF3/PS/p-Si/Ag structures were studied through the current-voltage (I-V) and capacitance-voltage (C-V) characteristics. Formation of metal-insulator-semiconductor (MIS) diode was evident whose forward current increased with annealing. A diode factor of about 2.4 has been obtained for the annealed heterostructure indicating a high density of trap states. The C−2-V curves of all samples showed negative flat band voltage of around −2 V confirming a large number of fixed positive charges in the LaF3. The photoluminescence (PL) intensity of the LaF3-impregnated PS showed aging for the as-deposited samples, but when annealed PS structure recovered the PL intensity. Experimental results show that the optimized chemical bath passivation process for the LaF3 on porous silicon could enable the porous silicon to be an important material for photonic application.  相似文献   

17.
用脉冲激光沉积(PLD)技术以多孔硅(PS)为衬底生长了ZnS薄膜,分别测量了ZnS、PS以及ZnS/PS复合体系在室温下的光致发光(PL)光谱。结果发现,ZnS/PS复合体系的PL光谱中PS的发光峰位相对于新制备的PS有所蓝移。把该ZnS/PS样品分成三块,在真空400℃分别退火10,20,30 min,研究不同退火时间对ZnS/PS复合体系光致发光特性的影响。发现退火后样品的PL光谱中都出现了一个新的绿色发光带,归结为ZnS的缺陷中心发光。随着退火时间的延长,PS的发光强度逐渐降低且峰位红移。把ZnS的蓝、绿光与PS的红光相叠加,整个ZnS/PS复合体系在可见光区450~700 nm形成一个较宽的光致发光谱带,呈现较强的白光发射。  相似文献   

18.
研究了不同时间腐蚀的多孔硅的光致发光性能与多孔硅的表面形貌和少子寿命之间的关系。结果表明,多孔硅的发光来自与氧空位有关的缺陷,而多孔硅表面的氢原子能够钝化多孔硅表面的非辐射中心从而提高多孔硅的发光效率。多孔硅的空隙度随腐蚀时间的延长而增大,这也导致了多孔硅的少子寿命的降低,从而造成多孔硅的光致发光效率随多孔硅空隙度的增大以及少子寿命的降低而提高。另外,原子力显微照片表明长时间的腐蚀使多孔硅表面层被化学腐蚀,从而降低了多孔硅表面的粗糙度。  相似文献   

19.
Iron is incorporated in porous silicon (PS) by impregnation method using Fe(NO3)3 aqueous solution. The presence of iron in PS matrix is shown from energy-dispersive X-ray (EDX) analysis and Fourier transform infrared (FTIR) measurements. The optical properties of PS and PS-doped iron are studied by photoluminescence (PL). The iron deposited in PS quenched the silicon dangling bonds then increased the PL intensity. The PL peak intensity of impregnated PS is seven times stronger than that in normal PS. Upon exposing iron-PS sample to ambient air, there is no significant change in peak position but the PL intensity increases during the first 3 weeks and then stabilises. The stability is attributed to passivation of the Si nanocrystallites by iron.  相似文献   

20.
We have investigated an oxidation of substrate effect on structural morphology of zinc oxide (ZnO) rods. ZnO rods are grown on porous silicon (PS) and on thermally oxidized porous silicon substrates by carbothermal reduction of ZnO powder through chemical vapour transport and condensation. Porous silicon is fabricated by electrochemical etching of silicon in hydrofluoric acid solution. The effects of substrates on morphology and structure of ZnO nanostructures have been studied. The morphology of substrates is studied by atomic force microscopy in contact mode. The texture coefficient of each sample is calculated from X-ray diffraction data that demonstrate random orientation of ZnO rods on oxidized porous silicon substrate. The morphology of structures is investigated by scanning electron microscopy that confirms the surface roughness tends to increase the growth rate of ZnO rods on oxidized PS compared with porous silicon substrate. A green emission has been observed in ZnO structures grown on oxidized PS substrates by photoluminescence measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号