首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibration-induced gear noise and dynamic loads remain key concerns in many transmission applications that use planetary gears. Tooth separations at large vibrations introduce nonlinearity in geared systems. The present work examines the complex, nonlinear dynamic behavior of spur planetary gears using two models: (i) a lumped-parameter model, and (ii) a finite element model. The two-dimensional (2D) lumped-parameter model represents the gears as lumped inertias, the gear meshes as nonlinear springs with tooth contact loss and periodically varying stiffness due to changing tooth contact conditions, and the supports as linear springs. The 2D finite element model is developed from a unique finite element-contact analysis solver specialized for gear dynamics. Mesh stiffness variation excitation, corner contact, and gear tooth contact loss are all intrinsically considered in the finite element analysis. The dynamics of planetary gears show a rich spectrum of nonlinear phenomena. Nonlinear jumps, chaotic motions, and period-doubling bifurcations occur when the mesh frequency or any of its higher harmonics are near a natural frequency of the system. Responses from the dynamic analysis using analytical and finite element models are successfully compared qualitatively and quantitatively. These comparisons validate the effectiveness of the lumped-parameter model to simulate the dynamics of planetary gears. Mesh phasing rules to suppress rotational and translational vibrations in planetary gears are valid even when nonlinearity from tooth contact loss occurs. These mesh phasing rules, however, are not valid in the chaotic and period-doubling regions.  相似文献   

2.
A method is described which can be used to calculate dynamic gear tooth force and bearing forces. The model includes elastic bearings. The gear mesh stiffness and the path of contact are determined using the deformations of the gears and the bearings. This gives contact outside the plane-of-action and a time-varying working pressure angle. In a numerical example it is found that the only important vibration mode for the gear contact is the one where the gear tooth deformation is dominant. The bearing force variation, however, will be much more affected by the other vibration modes. The influence of the friction force is also studied. The friction has no dynamic influence on the gear contact force or on the bearing force in the gear mesh line-of-action direction. On the other hand, the changing of sliding directions in the pitch point is a source for critical oscillations of the bearings in the gear tooth frictional direction. These bearing force oscillations in the frictional direction appear unaffected by the dynamic response along the gear mesh line-of-action direction.  相似文献   

3.
A new method of reducing gear vibration was analyzed using a simple spur gear pair with phasing. This new method is based on reducing the variation in mesh stiffness by adding another pair of gears with half-pitch phasing. This reduces the variation in the mesh stiffness of the final (phasing) gear, because each gear compensates for the variation in the other's mesh stiffness. A single gear pair model with a time-varying rectangular-type mesh stiffness function and backlash was used, and the dynamic response over a wide range of speeds was obtained by numerical integration. Because of the reduced variation in mesh stiffness and the double frequency, the phasing gear greatly reduced the dynamic response and nonlinear behavior of the normal gears. The results of the analysis indicate the possibility of reducing vibration of spur gear pairs using the proposed method.  相似文献   

4.
PLANETARY GEAR PARAMETRIC INSTABILITY CAUSED BY MESH STIFFNESS VARIATION   总被引:4,自引:0,他引:4  
Parametric instability is investigated for planetary gears where fluctuating stiffness results from the changing contact conditions at the multiple tooth meshes. The time-varying mesh stiffnesses of the sun-planet and ring-planet meshes are modelled as rectangular waveforms with different contact ratios and mesh phasing. The operating conditions leading to parametric instability are analytically identified. Using the well-defined properties of planetary gear vibration modes, the boundaries separating stable and unstable conditions are obtained as simple expressions in terms of mesh parameters. These expressions allow one to suppress particular instabilities by adjusting the contact ratios and mesh phasing. Tooth separation from parametric instability is numerically simulated to show the strong impact of this non-linearity on the response.  相似文献   

5.
A nonlinear time-varying dynamic model of a hypoid gear pair system with time-dependent nonlinear mesh stiffness, mesh damping and backlash properties is formulated to study the effect of mesh stiffness asymmetry for drive and coast sides on dynamic response. The asymmetric characteristic is the result of the inherent curvilinear tooth form and pinion offset in hypoid set. Using the proposed nonlinear time-varying dynamic model, effects of asymmetric mesh stiffness parameters that include mean mesh stiffness ratio, mesh stiffness variation and mesh stiffness phase angle on the dynamic mesh force response and tooth impact regions are examined systematically. Specifically, the dynamic models with only asymmetric mesh stiffness nonlinearity, with only backlash nonlinearity and with both asymmetric mesh stiffness and backlash nonlinearities are analyzed and compared. Using the parameters of a typical hypoid gear set, the extent of the effect of asymmetry in the mesh coupling on gear pair dynamics is quantified numerically. The results show that the increase in the mean mesh stiffness ratio tends to worsen the dynamic response amplitude, and the mesh stiffness parameters for drive side have more effect on dynamic response than those of the coast side one.  相似文献   

6.
In this study, the dynamic response of a pair of spur gears is analyzed when the gear set has translational motion due to bearing deformation. A new dynamic model for the gear set, considering translational motion, is proposed, in which the distance between the centers of a pinion and a gear varies with time. Therefore, the proposed model regards the pressure angle and the contact ratio as time-varying variables, while the previous model regards them as constants. After deriving nonlinear equations of motion for the gear set, the dynamic responses are computed by applying the Newmark time integration method. This paper claims that the new model produces more accurate dynamic responses in comparison to those of the previous model. Some dynamic response differences between the new and previous models are demonstrated, and the effects of damping and stiffness upon the dynamic responses are also investigated.  相似文献   

7.
In this paper, a passive approach to reduce transmitted vibration generated by gear mesh contact dynamics is presented. The approach utilizes the property of periodic structural components that creates stop band and pass band regions in the frequency spectra. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics and sub-harmonics of the gear mesh frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric variations are considered and each cell is assumed to be identical. A periodic shaft is designed and machined in order to reduce transmitted vibration of a pair of spur gears. Analytical and experimental results indicate that transmitted vibrations from gear mesh contact to the bearing supports are reduced at a variety of operational speeds under static torque preload.  相似文献   

8.
This paper deals with determining various time-varying parameters that are instrumental in introducing noise and vibration in a helical gear system. The most important parameter is the contact line variation, which subsequently induces friction force variation, frictional torque variation and variation in the forces at the bearings. The contact line variation will also give rise to gear mesh stiffness and damping variations. All these parameters are simulated for a defect-free and two defective cases of a helical gear system. The defective cases include one tooth missing and two teeth missing in the helical gear. The algorithm formulated in this paper is found to be simple and effective in determining the time-varying parameters.  相似文献   

9.
This work developed a computational process to predict noise radiation from gearboxes. It developed a system-level vibro-acoustic model of an actual gearbox, including gears, bearings, shafts, and housing structure, and compared the results to experiments. The meshing action of gear teeth causes vibrations to propagate through shafts and bearings to the housing radiating noise. The vibration excitation from the gear mesh and the system response were predicted using finite element and lumped-parameter models. From these results, the radiated noise was calculated using a boundary element model of the housing. Experimental vibration and noise measurements from the gearbox confirmed the computational predictions. The developed tool was used to investigate the influence of standard rolling element and modified journal bearings on gearbox radiated noise.  相似文献   

10.
This study focuses on the nonlinear dynamic and vibration characteristics of spur gear pair with local spalling defect to explore the spalling mechanism. The dynamic model of the gear pair with spalling defect and time-variant mesh stiffness is established to investigate the effect of spalling defect on mesh stiffness and dynamic response. The analytical solutions of the system which is deduced into four different stages of the gear with the time-variant stiffness in a mesh period are obtained. The dynamic responses with the evolvement of sapll are analyzed by using time history, phase contrail, Poincaré section and spectrum analysis. The spalling characteristics are also evaluated by employing statistical techniques, which shows that the spalling failure is suitable to be detected under low velocity and small excitation. The gearbox with spalling defect is designed and the experiments are carried out to get the dynamic characteristics of the spalling vibration signals. The results obtained herein show the good agreement qualitatively with the theoretical analysis, which provides a theoretical basis to spalling fault diagnosis of gearbox.  相似文献   

11.
The goal of this study was to examine the coupled vibration characteristics of a turbo-chiller rotor-bearing system having a bull-pinion speed increasing gear, using a coupled lateral and torsional vibration finite element model of a gear pair, and to provide the mechanism of the characteristic changes. The investigations were systematically carried out by comparing the uncoupled and coupled natural frequencies and their mode shapes with varying gear mesh stiffness, taking into account rotating speeds, and by comparing the strain energies of the lateral and torsional vibration modes. The results show that some modes may yield coupled lateral and torsional mode characteristics when the gear mesh stiffness increases over a certain value and, in addition, that their associated dominant modes may be different from their initial modes, i.e., a given dominant mode may change from an initial torsional one to a lateral one or vice versa.  相似文献   

12.
This paper investigates the response of a spur gear pair subjected to both deterministic and random loads. Backlash nonlinearity and time-varying mesh stiffness in gear systems are considered in the model. Path integration is adopted to capture the random response in probabilistic domain. In the path integration algorithm, the transition probability density function (PDF) within a short time interval is assumed as Gaussian. Then the mean and variance of the responses are calculated and expressed as closed forms for two different cases in gear systems, which are further used to construct the transition PDF. The simulation results are compared with that from Monte Carlo (MC) simulation and deterministic numerical integration. Good agreements are shown between these results. In addition, the multi-solutions feature characterizing the nonlinear gear system is also captured.  相似文献   

13.
Ring gear is a key element for vibration transmission and noise radiation in the planetary gear system which has been widely employed in different areas, such as wind turbine transmissions. Its flexibility has a great influence on the mesh stiffness of internal gear pair and the dynamic response of the planetary gear system, especially for the thin ring cases. In this paper, the flexibility of the internal ring gear is considered based on the uniformly curved Timoshenko beam theory. The ring deformation is coupled into the mesh stiffness model, which enables the investigation on the effects of the ring flexibility on the mesh stiffness and the dynamic responses of the planetary gear. A method about how to synthesize the total mesh stiffness of the internal gear pairs in multi-tooth region together with the ring deformation and the tooth errors is proposed. Numerical results demonstrate that the ring thickness has a great impact on the shape and magnitude of the mesh stiffness of the internal gear pair. It is noted that the dynamic responses of the planetary gear set with equally spaced supports for the ring gear are modulated due to the cyclic variation of the mesh stiffness resulted from the presence of the supports, which adds more complexity in the frequency structure.  相似文献   

14.
A dynamic model to determine vibrations in involute helical gears   总被引:1,自引:0,他引:1  
A method to determine the dynamic load between two rotating elastic helical gears is presented. The stiffness of the gear teeth is calculated using the finite element method and includes the contribution from the elliptic distributed tooth load. To make sure that the new incoming contacts which are the main excitation source are properly simulated, the necessary deformation of the gears is determined by using the true geometry and positions of the gears for every time step of the dynamic calculation. This allows the contact to be positioned outside the plane of action. A numerical example is presented with figures that show the behaviour of the dynamic transmission error as well as the variation of the contact pressure due to the dynamic load for different rotational speeds.  相似文献   

15.
Nonlinear free vibration analysis of curved double-walled carbon nanotubes (DWNTs) embedded in an elastic medium is studied in this study. Nonlinearities considered are due to large deflection of carbon nanotubes (geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner and outer tubes. The differential quadrature method (DQM) is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of algebraic equations of motion. The effect of nonlinearities, different end conditions, initial curvature, and stiffness of the surrounding elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTs is studied. Results show that it is possible to detect different vibration modes occurring at a single vibration frequency when CNTs vibrate in the out-of-phase vibration mode. Moreover, it is observed that boundary conditions have significant effect on the nonlinear natural frequencies of the DWCNT including multiple solutions.  相似文献   

16.
The exact dynamic analysis of plane frames should consider the effect of mass distribution in beam elements, which can be achieved by using the dynamic stiffness method. Solving for the natural frequencies and mode shapes from the dynamic stiffness matrix is a nonlinear eigenproblem. The Wittrick-Williams algorithm is a reliable tool to identify the natural frequencies. A deflated matrix method to determine the mode shapes is presented. The dynamic stiffness matrix may create some null modes in which the joints of beam elements have null deformation. Adding an interior node at the middle of beam elements can eliminate the null modes of flexural vibration, but does not eliminate the null modes of axial vibration. A force equilibrium approach to solve for the null modes of axial vibration is presented. Orthogonal conditions of vibration modes in the Bernoulli-Euler plane frames, which are required in solving the transient response, are theoretically derived. The decoupling process for the vibration modes of the same natural frequency is also presented.  相似文献   

17.
In this study, the dynamic responses of a planetary gear are analyzed when component gears have time-varying pressure angles and contact ratios caused by bearing deformations. For this purpose, this study proposes a new dynamic model of the planetary gear, in which the pressure angles and contact ratios change with time. The main difference from previous studies is that the present study regards the pressure angles and contact ratios as time-varying variables, while previous studies regarded them as constants. After nonlinear equations of motion for the planetary gear are derived, the dynamic responses are computed by applying the Newmark time integration method. The time responses for the present and previous studies are compared to show the effects of the time-varying pressure angles and contact ratios on the dynamic behaviors of a planetary gear. In addition, the effects of bearing stiffness on the pressure angles and contact ratios are also analyzed.  相似文献   

18.
In this paper, we study the dynamic modes of a scanning near-field optical microscope (SNOM) which uses an optical fiber probe; and the sensitivity of flexural and axial vibration modes for the probe were derived and the closed-form expressions were obtained. According to the analysis, as expected each mode has a different sensitivity and the first mode is the most sensitive mode of flexural and axial vibration for the SNOM probe. The sensitivities of both flexural and axial modes are greater for a material surface that is compliant with the cantilever probe. As the contact stiffness increases, the high-order vibration modes are more sensitive than the lower-order modes. Furthermore, the axial contact stiffness has a significant effect on the sensitivity of the SNOM probe, and this should be noted when designing new cantilever probes.  相似文献   

19.
In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are supported by the most general torsional boundary conditions. The transverse displacement components are expressed so as to be valid for large twisting rotations (finite displacement-small strain theory), thus the arising governing differential equations and boundary conditions are in general nonlinear. The resulting coupling effect between twisting and axial displacement components is considered and torsional vibration analysis is performed in both the torsional pre- or post-buckled state. A distributed mass model system is employed, taking into account the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an “average” axial displacement of the cross-section of the bar. The numerical solution of the aforementioned initial boundary value problem is performed using the analog equation method, a BEM based method, leading to a system of nonlinear differential-algebraic equations (DAE), which is solved using an efficient time discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with respect to the fundamental mode shape at the points of reversal of motion after ignoring the axial inertia to verify the accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT), with a geometrically linear fundamental mode shape as a starting vector. The validity of negligible axial inertia assumption is examined for the problem at hand.  相似文献   

20.
Gears are one of the most common and important machine components in many advanced machines. An improved understanding of vibration signal is required for the early detection of incipient gear failure to achieve high reliability. This paper mainly consists of two parts: in the first part, a 6-degree-of-freedom gear dynamic model including localized tooth defect has been developed. The model consists of a spur gear pair, two shafts, two inertias representing load and prime mover and bearings. The model incorporates the effects of time-varying mesh stiffness and damping, backlash, excitation due to gear errors and profile modifications. The second part consists of signal processing of simulated and experimental signals. Empirical mode decomposition (EMD) is a method of breaking down a signal without leaving a time domain. The process is useful for analysing non-stationary and nonlinear signals. EMD decomposes a signal into some individual, nearly monocomponent signals, named as intrinsic mode function (IMF). Crest factor and kurtosis have been calculated of these IMFs. EMD pre-processed kurtosis and crest factor give early detection of pitting as compared to raw signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号