首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A distributed-mass approach for dynamic analysis of Bernoulli-Euler plane frames
Authors:Hsiang-Chuan Tsai
Institution:Department of Construction Engineering, National Taiwan University of Science and Technology, 43, Section 4, Keelong Road, P.O. Box 90-130, Taipei 106, Taiwan
Abstract:The exact dynamic analysis of plane frames should consider the effect of mass distribution in beam elements, which can be achieved by using the dynamic stiffness method. Solving for the natural frequencies and mode shapes from the dynamic stiffness matrix is a nonlinear eigenproblem. The Wittrick-Williams algorithm is a reliable tool to identify the natural frequencies. A deflated matrix method to determine the mode shapes is presented. The dynamic stiffness matrix may create some null modes in which the joints of beam elements have null deformation. Adding an interior node at the middle of beam elements can eliminate the null modes of flexural vibration, but does not eliminate the null modes of axial vibration. A force equilibrium approach to solve for the null modes of axial vibration is presented. Orthogonal conditions of vibration modes in the Bernoulli-Euler plane frames, which are required in solving the transient response, are theoretically derived. The decoupling process for the vibration modes of the same natural frequency is also presented.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号