首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
发散角过大是制约超强激光与固体靶相互作用加速产生高能质子束应用的一个重大物理难题.本文提出了一种结构化的通道靶型,与超强激光相互作用可提高质子束的发散特性,通道壁上产生的横向电荷分离静电场可对质子有效聚焦.采用二维particle-in-cell粒子模拟程序对激光通道靶相互作用过程进行了研究,分析了加速质子束的性能特点.模拟结果表明,与传统平面靶相比,通道靶可以在不过多损失能量的情况下产生具有更好准直性的质子束,尤其当通道靶的直径与激光焦斑尺寸和质子源尺寸相当时,横向静电场能够有效聚焦质子束,并且可保证相对较高的激光能量利用率.  相似文献   

2.
高能质子在散裂靶中的能量沉积是散裂靶中子学研究的重要内容之一,准确掌握高能质子在散裂靶中引起的能量沉积分布与瞬态变化是开展散裂靶热工流体设计的重要前提.本文采用MCNPX,PHITS与FLUKA三种蒙特卡罗模拟程序,计算并比较了高能质子入射重金属铅靶、钨靶的能量沉积分布及不同粒子对总能量沉积的占比贡献;针对高能质子入射金属钨靶的能量沉积实验数据空白,采用热释光探测器阵列测量了250 MeV质子束入射厚钨靶的能量沉积分布,实验结果表明蒙特卡罗模拟程序在散裂靶中能量沉积的计算结果具有较高的可靠性.  相似文献   

3.
联合原子核研究所100亿电子伏同步稳相加速器,除产生高能质子束、π介子束和K介子束外,还产生高能γ量子束。它们主要是高能质子与内靶原子核作用时产生的π°介子的衰变产物。在实验室坐标系中,在和加速质子方向成0°角的方向上,从内靶上飞出的γ量子的最大能量达到几十亿电子伏。测量这些γ量子的角分布和能谱就可以了解高能核子—核子碰撞产生π°介子的机构。为了准备进行这类物理实验,我们安装了一台  相似文献   

4.
提出了一种新型的双锥靶结构用于准单能质子束加速。利用二维PIC粒子模拟程序研究了强激光与双锥靶作用加速产生质子束的物理过程以及质子束品质。双锥靶产生的质子束在峰值能量和发散角度等方面都明显优于相同激光条件下单锥靶和平面靶的结果。尤其与平面靶相比,双锥靶质子束的峰值能量提高了5倍以上,而且很好地保持准单能性。一方面双锥靶的内锥部分是临界密度材料,提高了激光的吸收效率;另一方面双锥靶内形成了更强的准静态磁场,可以约束引导更多的超热电子传输过锥尖,进而增强加速质子束的鞘层电场。  相似文献   

5.
近临界密度是激光等离子体相互作用中能量吸收和高能电子产生的重要等离子体参数区间.利用激光加速产生的质子束作为电磁场探针,研究了超强激光与近临界密度等离子体相互作用产生的等离子体结构及其时间演化.实验发现,初始均匀分布的质子束穿过近临界密度等离子体后分裂为两个斑.两个质子束斑的间距随着作用时间先增大后减小.并且两个束斑呈不对称分布.分析认为,幅度约为10~9 V/m的不对称分布瞬变电场是产生质子束偏折和分裂的主要原因.粒子模拟的结果也验证了这一解释.该研究对激光尾场电子加速、离子加速、惯性约束聚变快点火方案研究等有一定的参考价值.  相似文献   

6.
在中国科学院近代物理研究所兰州重离子加速器国家实验室测量了能量范围为50~250 keV 的质子入射碳化硅靶和硅靶表面的电子发射产额。实验结果发现,两种半导体靶材的电子发射产额随质子入射能量变化趋势均与作用过程中电子能损随质子入射能量的变化趋势相似。通过分析电子发射的能量来源,发现实验中电子发射产额主要由动能电子发射产额贡献,势能电子发射产额可以忽略不计。两种靶材的电子发射产额均近似地正比于质子入射靶材过程中的电子能损,比例系数B随入射能量略有变化。  相似文献   

7.
文献[1]中例2(c)项,求在质子-质子碰撞中产生π介子——即在以下反应中所得π介子的最大能量.要求分别就静止靶(入射质子能量为E0)和对撞机(每束质子能量为E0)两种情况求解. (一)对静止靶,文献[l]说:“根据能量守恒,π介子所能达到的最大能量应是入射粒子在实验室中的入射能量E  相似文献   

8.
准确测量气态靶区的有效靶原子密度能够提升离子与气体和离子与等离子体靶相互作用实验结果的精度和对物理过程的认识.实验中利用离子加速器引出的100 ke V质子束穿过一定长度的氢气靶,对质子的剩余能量进行了精确测量,获得了在气体靶内的质子能损数据,结合已有的能损研究结果,重新标定了气体靶区内的有效靶原子密度.分别比较了能损、电离型真空计IonIVac ITR 90和薄膜电容型真空计Varian CDG-500的实验测量结果,对比了修正后的电离型真空计有效气压曲线,结果发现质子束能损的测量方式具有原位、高准确性、在线监测等突出优势,为诊断气态靶有效原子密度提供了新的方法.  相似文献   

9.
本文从四个方面介绍1966年以来高能加速器的新发展.即强聚焦同步加速器、中高能强流加速器、对撞机和新技术及新加速原理. 强聚焦同步加速器是当前高能加速器的主要类型.近年来采用了分离作用强聚焦系统、增强器等新技术,最高能量已提高到400千兆电子伏、设计平均流强达微安级,都比六十年代水平提高十倍多.每千兆电子伏投资约60万美元,为六十年代水平的60%左右. 质子强流发展较慢,目前仍依靠二十多年前建成的稳相加速器,平均流强为微安级,最高能量1000兆电子伏.有的正计划改建,把流强提高到十至数十微安.建造中的有两台等时性旋加速器,设计平均流强100微安,能量约500兆电子伏.一台800兆电子伏的质子直线加速器正在总调中,设计流强1毫安.高能强流电子束主要依靠电子直线加速器产生,目前已达22千兆电子伏,平均流强48微安. 利用相对运动的两束粒子进行对撞的对撞机是近年来发展较快的加速器类型.由于对撞实验中粒子能量利用率高,是今后进行“超高能”实验的有效方法.目前已经建成的电子正电子对撞机单束能量约2.5千兆电子伏,质子对撞机为26.5千兆电子伏. 在加速器方面已广泛采用电子计算机和自动化技术.正在研究中的新技术主要为超导磁  相似文献   

10.
基于神光Ⅱ升级装置激光条件,利用流体程序、粒子模拟程序和Fokker-Placnck程序,模拟研究质子快点火中所需质子束的品质以及产生所需质子束的激光条件.首先根据快点火靶的条件,利用Fokker-Planck方程模拟快点火所需的质子束的能量范围,模拟表明当背景等离子密度为300 g/cm3时,能量为7—12 MeV的质子束适合点火;当背景等离子体密度为400 g/cm3时,能量为8—18 MeV的质子束适合点火.再根据神光Ⅱ升级装置实验条件研究质子束所需的激光参数,通过利用粒子模拟程序,结合流体程序给出的预等离子体,分别模拟研究了加预等离子体和不加预等离子体两种情况下的质子加速,在有预等离子体时得到的质子束最大能量约为22 MeV,没有预等离子体时得到的质子束最大能量为17.5 MeV,具体分析了两种情况下质子加速的物理机制,其结果跟等离子体自由膨胀模型结果符合得很好.  相似文献   

11.
<正>1.什么是γ光子对撞机1.1从加速器到对撞机人类对物质世界的探索从宏观上讲,从地球,太阳系、银河系再到整个宇宙,从微观上讲,从分子、原子、原子核、质子、中子再到各种强子、夸克,甚至希格斯粒子,都在不停地拓展。在粒子物理的进展中,对撞机起着不可替代的至关重要的作用。对撞机是利用两束反向运行的高能粒子束对撞,来  相似文献   

12.
采用飞秒激光辐照固体薄膜Cu靶的方式对质子束的产生及质子束能谱开展了实验研究。在SILEX-Ⅰ飞秒激光装置上,保持脉宽为30 fs不变,测量了不同激光能量和功率密度下辐照7 m Cu靶时的质子能谱。研究结果表明:质子沿着靶背法线方向发射,质子在一定能量处出现截断;随着质子束能量的增加,质子束流减小;轰击厚为7 m的Cu靶时,激光能量越大则质子束流越强;随着激光功率密度的增加,质子截止能也随之增加。  相似文献   

13.
利用1维粒子模拟程序,研究了超短超强激光脉冲与超薄双层靶(基底层和加速层厚度均为nm量级)相互作用产生准单能质子束的过程。研究表明,基底层厚度及加速层厚度对质子能谱的影响至关重要。减小基底层厚度,靶后静电场增强,质子的最大能量显著增大;减小加速层厚度,靶后静电场分布变得更加均匀,质子能谱中心能量变化不大,单能性变好。通过优化参数,获得了能散度为7%的准单能质子束。  相似文献   

14.
 实在的对撞机是一种把带电粒子(正负电子、质子与反质子、重离子等)加速到高能量并使之在其中对撞的加速器,相应地有正负电子对撞机、质子-质子对撞机、质子-反质子对撞机、电子-质子对撞机和重离子对撞机等.可是,光子对撞机又是何物呢?光子能发生相互作用吗?怎样才能得到高能光子并让它们对撞呢?下面就让我们来谈谈这些有趣的问题.光子能发生相互作用吗?常识告诉我们,光子和光子不能发生相互作用.每天我们都与光打交道,两束光照到一起时,您看见过它们变成别的什么了吗?没有,从来没有.或许您见过光的干涉现象,那只是光作为一种电磁波在迭加时幅度加强或减弱的效应.  相似文献   

15.
利用中国原子能科学研究院的中高能质子实验平台,针对两款商用铁电存储器开展了中高能质子单粒子效应实验研究,发现其中一款器件在质子辐照下发生了单粒子翻转和单粒子功能中断.本文主要针对单粒子功能中断效应展开了后续实验研究.首先通过改变质子能量对器件进行辐照,发现单粒子功能中断截面随质子能量的提高而增加.为进一步研究器件发生单粒子功能中断的机理,利用激光微束平台开展了辅助实验,对铁电存储器的单粒子功能中断效应的敏感区域进行了定位,最后发现铁电存储器单粒子功能中断是由器件外围电路发生的微锁定导致的.  相似文献   

16.
为了探索飞秒激光与固体靶相互作用中高能质子的产生和加速机制,在超短超强激光装置“SILEX-I”上进行了飞秒激光与平面固体薄膜Cu靶的相互作用中高能质子空间分布、能谱和产额的实验研究。实验采用固体核径迹探测器CR39和Thomson离子谱仪相结合的方式,在固体靶背表面法线方向测量了质子空间分布、能谱和产额。实验结果表明:质子沿着靶背法线方向发射,质子空间分布呈圆环状,存在一定的立体角;质子在一定能量处出现截断;截断能量的大小与靶厚度有关。经分析,高能离子的产生和加速是多种作用机制共同作用的结果,其中静电场中的TNSA加速机制则占主导地位。  相似文献   

17.
为了探索飞秒激光与固体靶相互作用中高能质子的产生和加速机制,在超短超强激光装置“SILEX-I”上进行了飞秒激光与平面固体薄膜Cu靶的相互作用中高能质子空间分布、能谱和产额的实验研究。实验采用固体核径迹探测器CR39和Thomson离子谱仪相结合的方式,在固体靶背表面法线方向测量了质子空间分布、能谱和产额。实验结果表明:质子沿着靶背法线方向发射,质子空间分布呈圆环状,存在一定的立体角;质子在一定能量处出现截断;截断能量的大小与靶厚度有关。经分析,高能离子的产生和加速是多种作用机制共同作用的结果,其中静电场中的TNSA加速机制则占主导地位。  相似文献   

18.
张肇西 《物理》1990,19(2):120-121
加拿大正在考虑花费四亿五千万美元,在已有的π介子工厂TRIUMF的基础上扩建成新的粒子工厂——K介子工厂,并简称为KAON. K介子工厂顾名思义是制作大量K介子的“工厂”.计划之中的KAON由以下三部分构成: 1.加速器:产生能量高(30GeV)、束流强(6 × 1014个/s)的质子初级束流. 2.靶:将这些强流质子束,打在固定靶上产生出大量次级粒子.用如此强流高能质子来产生大量次级粒子的靶,需要特别设计和解决许多特殊的技术问题,如散热等. 3.粒子束流的净化、分配装置:从这些次级粒子中,应用磁偏转、屏蔽、吸收等手段,最后制作出“纯净”的、能量…  相似文献   

19.
应用同时迭代重建算法(SIRT)重建不均匀稠密氘氚等离子体的密度分布.在二维等离子体密度重建的数值模拟中,探测稠密等离子体的高能质子束可以由强激光和等离子体相互作用产生,且质子束经过稠密等离子体后的能量损失是比较重要的.如果已知入射质子束和出射质子束的能量分布,可以在出射质子束能量测量的误差水平未知的情况下用SIRT算法重建等离子体的密度分布.结果显示,SIRT算法的精确度高于以L-曲线为准则的Tikhonov正则化方法,并可以在数据量不完全时重建密度分布.  相似文献   

20.
 从《高能物理》和《现代物理知识》杂志上我们已经熟悉了许多高能加速器的名字.譬如说,固定靶质子加速器AGS、SPS、TEVATRON;质子-反质子对撞机S(?)PS;正负电子对撞机SPEAR、DORIS、CESPPEP、PETRA、TRISTAN,最近我国建成了一台正负电子对撞机BEPC,西欧CERN建成了能量更高的正负电子对撞机LEP.为什么世界上要建立如此多的种类不同的高能加速器?世界上已经有了能量高的加速器为什么又还在建造能量低的加速器?等等.一般说来,不同类型和不同能量的高能加速器服务于不同目的的粒子物理实验.根据物理实验的物理目标,选用不同的加速器作实验,选用固定靶加速器或者对撞机;选择质子加速器或者电子加速器;选择能量低的或者能量高的,等等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号