首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu N  Zhu J  Lu D  Zhou X  Peng X  Du J 《Physical review letters》2012,108(13):130501
Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.  相似文献   

2.
计算的量子飞跃   总被引:5,自引:0,他引:5  
王安民 《物理》2000,29(6):351-357
利用量子力学的迭加和纠缠等特性进行的量子计算是计算技术的巨大飞跃。它能够比经典计算远为有效地解决一些问题。例如最为著名的Shor的算法原则上能够以多项式的时间因子化大的合数,从而使得经典计算机难以计算的这一问题得以解决。文章介绍了至今所发现的主要量子算法的基本原理和步骤,并且概述了量子计算的优越性、现状和发展前景,同时讨论了量子计算在物理学上的应用和意义。  相似文献   

3.
Efficient factorization with a single pure qubit and logN mixed qubits   总被引:1,自引:0,他引:1  
It is commonly assumed that Shor's quantum algorithm for the efficient factorization of a large number N requires a pure initial state. Here we demonstrate that a single pure qubit, together with a collection of log 2N qubits in an arbitrary mixed state, is sufficient to implement Shor's factorization algorithm efficiently.  相似文献   

4.
We report an experimental demonstration of a complied version of Shor's algorithm using four photonic qubits. We choose the simplest instance of this algorithm, that is, factorization of N=15 in the case that the period r=2 and exploit a simplified linear optical network to coherently implement the quantum circuits of the modular exponential execution and semiclassical quantum Fourier transformation. During this computation, genuine multiparticle entanglement is observed which well supports its quantum nature. This experiment represents an essential step toward full realization of Shor's algorithm and scalable linear optics quantum computation.  相似文献   

5.
Shor's powerful quantum algorithm for factoring represents a major challenge in quantum computation. Here, we implement a compiled version in a photonic system. For the first time, we demonstrate the core processes, coherent control, and resultant entangled states required in a full-scale implementation. These are necessary steps on the path towards scalable quantum computing. Our results highlight that the algorithm performance is not the same as that of the underlying quantum circuit and stress the importance of developing techniques for characterizing quantum algorithms.  相似文献   

6.
It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.  相似文献   

7.
因子分解对所有的现行计算机而言是难解的 .这是现在通用的公共加密系统的基础 .文章介绍了在量子计算机上进行的Shor量子算法 ,即利用量子态的相干叠加和纠缠特性以及量子逻辑门实现量子计算的方法 ;并着重从理论原理和实验实现这两方面说明利用余因子函数和离散傅里叶变换使这种量子算法对因子分解是有效的 .  相似文献   

8.
A quantum processor might execute certain computational tasks exponentially faster than a classical processor. Here, using superconducting quantum circuits we design a powerful universal quantum processor with the structure of symmetric all-to-all capacitive connection. We present the Hamiltonian and use it to demonstrate a full set of qubit operations needed in the programmable universal quantum computations. With the device the unwanted crosstalk and ZZ-type couplings between qubits can be effectively suppressed by tuning gate voltages, and the design allows efficient and high-quality couplings of qubits. Within available technology,the scheme may enable a practical programmable universal quantum computer.  相似文献   

9.
A scheme for implementing discrete quantum Fourier transform isproposed via quantum dots embedded in a microcavity, and then someof its applications are investigated, i.e., Deutsch-Jozsa algorithm and Shor's quantum factoring. In particular, the detailed process of implementing one-qubit Deutsch-Jozsa algorithm and the factorization of N=15 are given. The microcavity mode is only virtually excited in the whole interaction, so the effective decoherent has slight effect on the current scheme. These schemeswould be an important step to fabricate a solid quantum computer.  相似文献   

10.
The promise of quantum computing to open new unexplored possibilities in several scientific fields has been long discussed, but until recently the lack of a functional quantum computer has confined this discussion mostly to theoretical algorithmic papers. It was only in the last few years that small but functional quantum computers have become available to the broader research community. One paradigm in particular, quantum annealing, can be used to sample optimal solutions for a number of NP-hard optimization problems represented with classical operations research tools, providing an easy access to the potential of this emerging technology. One of the tasks that most naturally fits in this mathematical formulation is feature selection. In this paper, we investigate how to design a hybrid feature selection algorithm for recommender systems that leverages the domain knowledge and behavior hidden in the user interactions data. We represent the feature selection as an optimization problem and solve it on a real quantum computer, provided by D-Wave. The results indicate that the proposed approach is effective in selecting a limited set of important features and that quantum computers are becoming powerful enough to enter the wider realm of applied science.  相似文献   

11.
We review briefly the problems that are driving the search for a quantum computer. These include, primarily, methods for encryption and decryption based on Shor’s algorithm for factoring large integers and the use of Pell’s equation for encryption. We also outline some of the approaches that have been suggested for implementing a quantum computer and then focus on Josephson-junction systems as qubits. We have been investigating the current-biased Josephson junction for this application, a suggestion we made about 2 years ago. We have studied macroscopic quantum tunneling and energy level spectroscopy, using microwaves, in single junctions and recently we have begun measurements of the two-quantum bit (qubit) system, i.e. two capacitively coupled junctions. Theoretical studies of energy levels and their dynamic evolution are also in progress. In the present report we discuss the basics of single Josephson junctions and compare their potential as qubits with the potentials of other systems. We also discuss our future plans to obtain greater isolation of the junctions from sources of decoherence and to develop realistic qubits. An important first step must be to exhibit quantum entanglement and measure coherence times. Then it must be shown that the states of the qubits can be initialized, that gate operations can be performed, and that the results can be read out.  相似文献   

12.
We investigate the influence of superpositional wave function oscillations on the performance of Shor's quantum algorithm for factorization of integers. It is shown that wave function oscillations can modify the required quantum interference. This undesirable effect can be routinely eliminated using a resonant pulse implementation of quantum computation, but requires special analysis for nonresonant implementations. We also discuss the influence of this effect on implementation of other quantum algorithms.  相似文献   

13.
《中国物理 B》2021,30(8):80304-080304
Superconducting circuits based on Josephson junctions are regarded as one of the most promising technologies for the implementation of scalable quantum computers. This review presents the basic principles of superconducting qubits and shows the progress of quantum computing and quantum simulation based on superconducting qubits in recent years.The experimental realization of gate operations, readout, error correction codes, as well as some quantum algorithms are summarized, followed by an introduction of quantum simulation. And then some important applications in fields including condensed matter physics, quantum annealing, and quantum chemistry are discussed.  相似文献   

14.
The stabilizing properties of one-error correcting jump codes are explored under the realistic non-ideal condition of finite recovery times. For this purpose the quantum algorithm of the tent-map is decomposed into a universal set of Hamiltonian quantum gates which ensure perfect correction of spontaneous decay processes under ideal circumstances even if they occur during a gate operation. An entanglement gate is presented which is capable of entangling any two logical qubits of different one-error correcting code spaces. With the help of this gate simultaneous spontaneous decay processes affecting physical qubits of different code spaces can be corrected and decoherence can be suppressed significantly.  相似文献   

15.
The realization of controllable couplings between any two qubits and among any multiple qubits is the critical problem in building a programmable quantum processor(PQP). We present a design to implement these types of couplings in a double-dot molecule system, where all the qubits are connected directly with capacitors and the couplings between them are controlled via the voltage on the double-dot molecules. A general interaction Hamiltonian of n qubits is presented, from which we can derive the Hamiltonians for performing operations needed in building a PQP, such as gate operations between arbitrary two qubits and parallel coupling operations for multigroup qubits. The scheme is realizable with current technology.  相似文献   

16.
Prime Factorization in the Duality Computer   总被引:1,自引:0,他引:1  
We give algorithms to factorize large integers in the duality computer.We provide three duality algorithms for factorization based on a naive factorization method,the Shor algorithm in quantum computing,and the Fermat's method in classical computing.All these algorithms may be polynomial in the input size.  相似文献   

17.
《Physics letters. A》2020,384(14):126266
Preparing an arbitrary preselected coherent superposition of quantum states finds widespread application in physics, including initialization of trapped ion and superconductor qubits in quantum computers. Both fractional and integer stimulated Raman adiabatic passage involve smooth Gaussian pulses, designed to grant adiabaticity, so to keep the system in an eigenstate constituted only of the initial and final states. We explore an alternative method for discovering appropriate pulse sequences based on deep reinforcement learning algorithms and by imposing that the control laser can be only either on or off instead of being continuously amplitude-modulated. Despite the adiabatic condition is violated, we obtain fast and flexible solutions for both integer and fractional population transfer. Such method, consisting of a Digital Stimulated Raman Passage (D-STIRaP), proves to be particularly effective when the system is affected by dephasing therefore providing an alternative path towards control of noisy quantum states, like trapped ions and superconductor qubits.  相似文献   

18.
Learning the Hamiltonian of a quantum system is indispensable for prediction of the system dynamics and realization of high fidelity quantum gates.However,it is a significant challenge to efficiently characterize the Hamiltonian which has a Hilbert space dimension exponentially growing with the system size.Here,we develop and implement an adaptive method to learn the effective Hamiltonian of an 11-qubit quantum system consisting of one electron spin and ten nuclear spins associated with a single nitrogen-vacancy center in a diamond.We validate the estimated Hamiltonian by designing universal quantum gates based on the learnt Hamiltonian and implementing these gates in the experiment.Our experimental result demonstrates a well-characterized 11-qubit quantum spin register with the ability to test quantum algorithms,and shows our Hamiltonian learning method as a useful tool for characterizing the Hamiltonian of the nodes in a quantum network with solid-state spin qubits.  相似文献   

19.
To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT) within existing technology, this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2~n)), which could realize large-scale QFT using an arbitrary-scale quantum register. By developing a feasible method to realize the control quantum gate Rk, we experimentally realize the 2-bit semiclassical QFT over Z_(2~3) on IBM's quantum cloud computer, which shows the feasibility of the method. Then, we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT, which is mainly due to fewer two-qubit gates in the semiclassical QFT. Furthermore, based on the proposed method, N = 15 is successfully factorized by implementing Shor's algorithm.  相似文献   

20.
Among a number of candidates, photons have advantages for implementing qubits: very weak coupling to the environment, the existing single photon measurement technique, and so on. Moreover, commercially available fiber-optic devices enable us to construct quantum circuits that consist of one-qubit operations (including classically controlled gates). Fiber optics resolves the mode matching problems in conventional optics and provides mechanically stable optical circuits. A quantum Fourier transform (QFT) followed by measurement was demonstrated with a simple circuit based on fiber optics. The circuit was shown to be robust against imperfections in the rotation gate. The error probability was estimated to be 0.01 per qubit, which corresponded to error-free operation for 100 qubits. The error probability can be further reduced to achieve successful QFT of 1024 qubits by taking the majority of the accumulated results. As is well known, QFT is a key function in quantum computations such as the final part of Shor’s factorization algorithm. The present QFT circuit, in combination with controlled unitary gates, would make possible practical quantum computers. Possible schemes of realizing quantum computers in this line are explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号