首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈汉武  李科  赵生妹 《物理学报》2015,64(24):240301-240301
量子行走是经典随机行走在量子力学框架下的对应, 理论上可以用来解决一类无序数据库的搜索问题. 因为携带信息的量子态的扩散速度与经典相比有二次方式的增长, 所以量子行走优于经典随机行走, 量子行走的特性值得加以利用. 量子行走作为一种新发现的物理现象的数学描述, 引发了一种新的思维方式, 孕育了一种新的理论计算模型. 最新研究表明, 量子行走本身也是一种通用计算模型, 可被视为设计量子算法的高级工具, 因此受到部分计算机理论科学领域学者的关注和研究. 对于多数问题求解方案的量子算法的设计, 理论上可以只在量子行走模型下进行考虑. 基于Grover算法的相位匹配条件, 本文提出了一个新的基于量子行走的搜索算法. 理论演算表明: 一般情况下本算法的时间复杂度与Grover算法相同, 但是当搜索的目标数目多于总数的1/3时, 本算法搜索成功的概率要大于Grover算法. 本文不但利用Grover算法中相位匹配条件构造了一个新的量子行走搜索算法, 而且在本研究室原有的量子电路设计研究成果的基础上给出了该算法的量子电路表述.  相似文献   

2.
龙桂鲁 《物理》2006,35(5):388-389
在清华大学物理系成立60周年之际,我们对近年来清华大学物理系量子信息研究的主要进展情况作一介绍,包括量子搜索算法研究,核磁共振量子计算的实验研究,量子通讯的理论与实验研究.在量子搜索算法研究方面,我们提出了量子搜索算法的相位匹配,纠正了当时的一种错误观点,并且提出了一种成功率为100%的量子搜索算法,改进了Grover算法;在核磁共振量子计算实验方面,我们实现了2到7个量子比特的多种量子算法的实验演示;在量子通讯方面,我们提出了分布式传输的量子通讯的思想,应用于量子密钥分配、量子秘密共享、量子直接安全通讯等方面,构造了多个量子通讯的理论方案.在实验室,我们实现了2米距离的空间量子密码通讯的演示实验.  相似文献   

3.
The characterization of quantum dynamics is a fundamental and central task in quantum mechanics. This task is typically addressed by quantum process tomography (QPT). Here we present an alternative "direct characterization of quantum dynamics" (DCQD) algorithm. In contrast to all known QPT methods, this algorithm relies on error-detection techniques and does not require any quantum state tomography. We illustrate that, by construction, the DCQD algorithm can be applied to the task of obtaining partial information about quantum dynamics. Furthermore, we argue that the DCQD algorithm is experimentally implementable in a variety of prominent quantum-information processing systems, and show how it can be realized in photonic systems with present day technology.  相似文献   

4.
The quantum-classical hybrid algorithm is a promising algorithm with respect to demonstrating the quantum advantage in noisy-intermediate-scale quantum(NISQ) devices. When running such algorithms, effects due to quantum noise are inevitable. In our work, we consider a well-known hybrid algorithm, the quantum approximate optimization algorithm(QAOA). We study the effects on QAOA from typical quantum noise channels, and produce several numerical results. Our research indicates that the output state fidelity, i.e., the cost function obtained from QAOA, decreases exponentially with respect to the number of gates and noise strength. Moreover,we find that when noise is not serious, the optimized parameters will not deviate from their ideal values. Our result provides evidence for the effectiveness of hybrid algorithms running on NISQ devices.  相似文献   

5.
We apply the transitionless driving on the local adiabatic quantum search algorithm to speed up the adiabatic process.By studying quantum dynamics of the adiabatic search algorithm with the equivalent two-level system, we derive the transitionless driving Hamiltonian for the local adiabatic quantum search algorithm. We found that when adding a transitionless quantum driving term H_D(t) on the local adiabatic quantum search algorithm, the success rate is 1 exactly with arbitrary evolution time by solving the time-dependent Schr odinger equation in eigen-picture. Moreover, we show the reason for the drastic decrease of the evolution time is that the driving Hamiltonian increases the lowest eigenvalues to a maximum of ON~(1/2).  相似文献   

6.
In this paper we present a classical parallel quantum algorithm for the satisfiability problem. We have exploited the classical parallelism of quantum algorithms developed in [G.L. Long and L. Xiao, Phys. Rev. A 69 (2004) 052303], so that additional acceleration can be gained by using classical parallelism. The quantum algorithm first estimates the number of solutions using the quantum counting algorithm, and then by using the quantum searching algorithm, the explicit solutions are found.  相似文献   

7.
We present a rigorous proof that quantum circuit algorithm can be transformed into quantum adiabatic algorithm with the exact same time complexity. This means that from a quantum circuit algorithm of L gates we can construct a quantum adiabatic algorithm with time complexity of O(L). Additionally, our construction shows that one may exponentially speed up some quantum adiabatic algorithms by properly choosing an evolution path.  相似文献   

8.
刘艳梅  陈汉武  刘志昊  薛希玲  朱皖宁 《物理学报》2015,64(1):10301-010301
量子行走是一种典型的量子计算模型, 近年来开始受到量子计算理论研究者们的广泛关注. 本文首先证明了在星图上硬币量子行走与散射量子行走的酉等价关系, 之后提出了一个在星图上的散射量子行走搜索算法. 该算法的时间复杂度与Grover算法相同, 但是当搜索的目标数目多于总数的1/3时搜索成功概率大于Grover算法.  相似文献   

9.
Similar to the classical meet-in-the-middle algorithm, the storage and computation complexity are the key factors that decide the efficiency of the quantum meet-in-the-middle algorithm. Aiming at the target vector of fixed weight, based on the quantum meet-in-the-middle algorithm, the algorithm for searching all n-product vectors with the same weight is presented, whose complexity is better than the exhaustive search algorithm. And the algorithm can reduce the storage complexity of the quantum meet-in-the-middle search algorithm. Then based on the algorithm and the knapsack vector of the Chor-Rivest public-key crypto of fixed weight d, we present a general quantum meet-in-the-middle search algorithm based on the target solution of fixed weight, whose computational complexity is ∑jd=(0(√Cn-k+1d-j)+O(CkjlogCkj)) with ∑i=0dCki memory cost. And the optimal value of k is given. Compared to the quantum meet-in-the-middle search algorithm for knapsack problem and the quantum algorithm for searching a target solution of fixed weight, the computational complexity of the algorithm is lower. And its storage complexity is smaller than the quantum meet-in-the-middle-algorithm.  相似文献   

10.
Ordinary approach to quantum algorithm is based on quantum Turing machine or quantum circuits. It is known that this approach is not powerful enough to solve NP-complete problems. In this paper we study a new approach to quantum algorithm which is a combination of the ordinary quantum algorithm with a chaotic dynamical system. We consider the satisfiability problem as an example of NP-complete problems and argue that the problem, in principle, can be solved in polynomial time by using our new quantum algorithm.  相似文献   

11.
Quantum walk, the quantum counterpart of random walk, is an important model and widely studied to develop new quantum algorithms. This paper studies the relationship between the continuous-time quantum walk and the symmetry of a graph, especially that of a tree. Firstly, we prove in mathematics that the symmetry of a graph is highly related to quantum walk. Secondly, we propose an algorithm based on the continuous-time quantum walk to compute the symmetry of a tree. Our algorithm has better time complexity O(N3) than the current best algorithm. Finally, through testing three types of 10024 trees, we find that the symmetry of a tree can be found with an extremely high efficiency with the help of the continuous-time quantum walk.  相似文献   

12.
RSA cryptography is based on the difficulty of factoring large integers, which is an NP-hard(and hence intractable) problem for a classical computer. However, Shor's algorithm shows that its complexity is polynomial for a quantum computer, although technical difficulties mean that practical quantum computers that can tackle integer factorizations of meaningful size are still a long way away. Recently, Jiang et al. proposed a transformation that maps the integer factorization problem onto the quadratic unconstrained binary optimization(QUBO) model. They tested their algorithm on a D-Wave 2000 Q quantum annealing machine, raising the record for a quantum factorized integer to 376289 with only 94 qubits. In this study, we optimize the problem Hamiltonian to reduce the number of qubits involved in the final Hamiltonian while maintaining the QUBO coefficients in a reasonable range, enabling the improved algorithm to factorize larger integers with fewer qubits. Tests of our improved algorithm using D-Wave's hybrid quantum/classical simulator qbsolv confirmed that performance was improved, and we were able to factorize 1005973, a new record for quantum factorized integers, with only 89 qubits. In addition, our improved algorithm can tolerate more errors than the original one. Factoring 1005973 using Shor's algorithm would require about 41 universal qubits,which current universal quantum computers cannot reach with acceptable accuracy. In theory, the latest IBM Q System OneTM(Jan. 2019) can only factor up to 10-bit integers, while the D-Wave have a thousand-fold advantage on the factoring scale. This shows that quantum annealing machines, such as those by D-Wave, may be close to cracking practical RSA codes, while universal quantum-circuit-based computers may be many years away from attacking RSA.  相似文献   

13.
Optimising open quantum system evolution is an important step on the way to achieving quantum computing and quantum thermodynamic tasks. In this article, we approach optimisation via variational principles and derive an open quantum system variational algorithm explicitly for Lindblad evolution in Liouville space. As an example of such control over open system evolution, we control the thermalisation of a qubit attached to a thermal Lindbladian bath with a damping rate γ. Since thermalisation is an asymptotic process and the variational algorithm we consider is for fixed time, we present a way to discuss the potential speedup of thermalisation that can be expected from such variational algorithms.  相似文献   

14.
A realizable quantum encryption algorithm for qubits   总被引:3,自引:0,他引:3       下载免费PDF全文
周南润  曾贵华 《中国物理》2005,14(11):2164-2169
A realizable quantum encryption algorithm for qubits is presented by employing bit-wise quantum computation. System extension and bit-swapping are introduced into the encryption process, which makes the ciphertext space expanded greatly. The security of the proposed algorithm is analysed in detail and the schematic physical implementation is also provided. It is shown that the algorithm, which can prevent quantum attack strategy as well as classical attack strategy, is effective to protect qubits. Finally, we extend our algorithm to encrypt classical binary bits and quantum entanglements.  相似文献   

15.
Numerical quantum transport calculations are commonly based on a tight-binding formulation. A wide class of quantum transport algorithms require the tight-binding Hamiltonian to be in the form of a block-tridiagonal matrix. Here, we develop a matrix reordering algorithm based on graph partitioning techniques that yields the optimal block-tridiagonal form for quantum transport. The reordered Hamiltonian can lead to significant performance gains in transport calculations, and allows to apply conventional two-terminal algorithms to arbitrarily complex geometries, including multi-terminal structures. The block-tridiagonalization algorithm can thus be the foundation for a generic quantum transport code, applicable to arbitrary tight-binding systems. We demonstrate the power of this approach by applying the block-tridiagonalization algorithm together with the recursive Green’s function algorithm to various examples of mesoscopic transport in two-dimensional electron gases in semiconductors and graphene.  相似文献   

16.
彭永刚 《大学物理》2021,40(1):38-47
从两量子位核磁共振量子处理器物理模型出发,利用Raedt小组提出的自旋-1/2代数理论,根据量子控制非门的定义及Grover量子算法原理,介绍了量子控制非门的4种不同脉冲序列及两量子位Grover量子算法的两种不同脉冲序列的设计过程,通过数值求解含时薛定谔方程模拟量子控制非门和两量子位Grover量子算法,等价于执行量子控制非门和两量子位Grover量子算法运算,演示和分析量子控制非门及两量子位Grover量子算法核磁共振脉冲序列设计呈现的量子程序问题.  相似文献   

17.
《Physics letters. A》2020,384(25):126590
Quantum algorithms can enhance machine learning in different aspects. Here, we study quantum-enhanced least-square support vector machine (LS-SVM). Firstly, a novel quantum algorithm that uses continuous variable to assist matrix inversion is introduced to simplify the algorithm for quantum LS-SVM, while retaining exponential speed-up. Secondly, we propose a hybrid quantum-classical version for sparse solutions of LS-SVM. By encoding a large dataset into a quantum state, a much smaller transformed dataset can be extracted using quantum matrix toolbox, which is further processed in classical SVM. We also incorporate kernel methods into the above quantum algorithms, which uses both exponential growth Hilbert space of qubits and infinite dimensionality of continuous variable for quantum feature maps. The quantum LS-SVM exploits quantum properties to explore important themes for SVM such as sparsity and kernel methods, and stresses its quantum advantages ranging from speed-up to the potential capacity to solve classically difficult machine learning tasks.  相似文献   

18.
The solutions of the problems related to open quantum systems have attracted considerable interest.We propose a variational quantum algorithm to find the steady state of open quantum systems.In this algorithm,we employ parameterized quantum circuits to prepare the purification of the steady state and define the cost function based on the Lindblad master equation,which can be efficiently evaluated with quantum circuits.We then optimize the parameters of the quantum circuit to find the steady state.Numerical simulations are performed on the one-dimensional transverse field Ising model with dissipative channels.The result shows that the fidelity between the optimal mixed state and the true steady state is over 99%.This algorithm is derived from the natural idea of expressing mixed states with purification and it provides a reference for the study of open quantum systems.  相似文献   

19.
It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.  相似文献   

20.
Quantum optimization algorithms can outperform their classical counterpart and are key in modern technology. The second-order optimization algorithm(the Newton algorithm) is a critical optimization method, speeding up the convergence by employing the second-order derivative of loss functions in addition to their first derivative. Here, we propose a new quantum second-order optimization algorithm for general polynomials with a computational complexity of O(poly(log d)). We use this algorithm to solve the nonlinear equation and learning parameter problems in factorization machines. Numerical simulations show that our new algorithm is faster than its classical counterpart and the first-order quantum gradient descent algorithm. While existing quantum Newton optimization algorithms apply only to homogeneous polynomials, our new algorithm can be used in the case of general polynomials, which are more widely present in real applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号