首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Josephson-junction qubits: entanglement and coherence
Authors:J R Anderson  A J Berkley  A J Dragt  M A Gubrud  P R Johnson  C J Lobb  R C Ramos  F W Strauch  F C Wellstood  H Xu
Abstract:We review briefly the problems that are driving the search for a quantum computer. These include, primarily, methods for encryption and decryption based on Shor’s algorithm for factoring large integers and the use of Pell’s equation for encryption. We also outline some of the approaches that have been suggested for implementing a quantum computer and then focus on Josephson-junction systems as qubits. We have been investigating the current-biased Josephson junction for this application, a suggestion we made about 2 years ago. We have studied macroscopic quantum tunneling and energy level spectroscopy, using microwaves, in single junctions and recently we have begun measurements of the two-quantum bit (qubit) system, i.e. two capacitively coupled junctions. Theoretical studies of energy levels and their dynamic evolution are also in progress. In the present report we discuss the basics of single Josephson junctions and compare their potential as qubits with the potentials of other systems. We also discuss our future plans to obtain greater isolation of the junctions from sources of decoherence and to develop realistic qubits. An important first step must be to exhibit quantum entanglement and measure coherence times. Then it must be shown that the states of the qubits can be initialized, that gate operations can be performed, and that the results can be read out.
Keywords:Josephson-junction qubits  macroscopic quantum tunneling  energy-level spectroscopy  coupled junctions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号