首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article gives an analytical, computational, and experimental treatment of the spatial resolution encoded in unfocused regions of focused ultrasound beams. This topic is important in diagnostic ultrasound since ultrasound array systems are limited to a single transmit focal point per acoustic transmission, hence there is a loss of spatial resolution away from the transmit focus, even with the use of dynamic receive focusing. It is demonstrated that the spatial bandwidth of a Gaussian-apodized beam is approximately constant with depth, which means that there is just as much encoded spatial resolution away from the transmit focus as there is in the focal region. The practical application of this principle is discussed, an algorithm for retrospectively focusing signals from unfocused regions of fixed-focus beams is presented, and a quantitative comparison between the authors' methods and dynamic-receive beamforming is provided.  相似文献   

2.
A comparative study of two methods used for dynamic focusing of ultrasound: the conventional phased arrays and a new method based on time reversal of acoustic signals is carried out. A laboratory model of the focusing system based on time reversal is developed and manufactured. One of the principal elements of the system is a reverberator with several piezoelectric transducers attached to its walls. Experiments are carried out to demonstrate the ability of such a system to generate one focus or several foci and to steer them electronically at considerable distances (50 mm at minimum) off the axis of the focusing system without causing the appearance of any grating lobes or other secondary intensity maxima. The focusing properties of the system are compared with the results of numerical simulation of two-dimensional phased arrays, whose parameters are taken to be typical for the arrays used in extracorporeal surgery. The important role of randomization is demonstrated for both of the aforementioned focusing methods. The prospects of practical application of the two methods are discussed.  相似文献   

3.
基于虚拟源时间反转的经颅超声精确聚焦*   总被引:1,自引:0,他引:1  
苏畅  彭哲凡  林伟军 《应用声学》2016,35(5):377-383
针对经颅超声难以精确聚焦的问题,本文研究了基于虚拟源的时间反转方法,建立颅骨二维数字模型,在聚焦目标处设置虚拟声源,利用时域有限差分法模拟超声时间反转过程,并考察基于虚拟源时间反转方法的聚焦效果。数值仿真结果表明,基于虚拟源的时间反转方法可以实现经颅超声的精确聚焦,聚焦强度和精度好于传统的相控聚焦;换能器中心频率和数量对聚焦效果的影响规律与相控聚焦时类似;该方法可以同时向多个焦点聚焦,并自适应调节各焦点处声压幅度。  相似文献   

4.
基于高分辨的CT数据建立了非均匀颅骨仿真模型,该模型引入了颅骨的声衰减系数,深入研究和分析了声波时间反转法和超声相控阵法在颅脑中的聚焦方法及效果。颅骨具有较强的声波衰减特性,使用时间反转聚焦时需要进行幅度补偿,对于0.7MHz的频率信号,幅度补偿后的时间反转聚焦声场主瓣宽度窄、旁瓣低,焦点处声场比无幅度补偿的时间反转法提高8.86dB,比超声相控阵聚焦法提高7.89dB,具有很好的空间聚焦精度和聚焦效率。研究了颅骨衰减系数、声场焦点位置、声波频率、换能器阵列位置和方位等参数对聚焦声场的影响,结果表明,幅度补偿时间反转法比相控阵法具有更低的旁瓣,且高频时的聚焦效果比相控阵好,相控阵聚焦对换能器阵列的位置和方位比较敏感,而时间反转经颅超声聚焦对声传播路径和入射角具有更高的鲁棒性。   相似文献   

5.
Effect of strong acoustic nonlinearity on the efficiency of heating of a biological tissue by high-intensity focused ultrasound in the modes of operation used in real clinical setups is studied. The spatial distributions of thermal sources and the corresponding temperature increments caused by ultrasonic absorption are analyzed. Numerical algorithms are developed for simulating the nonlinear focusing of ultrasound in the calculations of both the heat sources on the basis of the Khokhlov-Zabolotskaya-Kuznetsov-type equations and the temperature field in a tissue on the basis of an inhomogeneous thermal conduction equation with a relaxation term. It is demonstrated that in the mode of operation typical of acoustic surgery, the nonlinearity improves the locality of heating and leads to an increase in the power of thermal sources in the focus by approximately an order of magnitude. The diffusion phenomena in the tissue lead to a smoothing of the spatial temperature distributions, as compared to the distributions of thermal sources. In the case of one-second exposure in the nonlinear mode of focusing, the maximal temperature in the focus exceeds the values obtained in the approximation of linear wave propagation by a factor of three.  相似文献   

6.
New perspectives in audible range acoustics, such as virtual sound space creation and active noise control, rely on the ability of the rendering system to recreate precisely a desired sound field. This ability to control sound in a given volume of a room is directly linked to the capacity to focus acoustical energy both in space and time. However, sound focusing in rooms remains a complicated problem, essentially because of the multiple reflections on obstacles and walls occurring during propagation. In this paper, the technique of time-reversal focusing, well known in ultrasound, is experimentally applied to audible range acoustics. Compared to classical focusing techniques such as delay law focusing, time reversal appears to considerably improve quality of both temporal and spatial focusing. This so-called super-resolution phenomenon is due to the ability of time reversal to take into account all of the different sound paths between the emitting antenna and the focal point, thus creating an adaptive spatial and temporal matched filter for the considered propagation medium. Experiments emphasize the strong robustness of time-reversal focusing towards small modifications in the medium, such as people in motion or temperature variations. Sound focusing through walls using the time-reversal approach is also experimentally demonstrated.  相似文献   

7.
张帅  黄明辉  焦立鹏  郭梁 《应用声学》2021,40(3):391-399
无创脑神经调控技术是生物医学领域的研究热点,经颅磁声电刺激是利用静磁场和声场的耦合而产生的感应电场作用于神经组织,对大脑的目标位置进行刺激和调控的一项技术。颅骨的存在使超声在传播过程中发生相位畸变和幅值衰减,聚焦区域偏离,难以实现精准聚焦。该文基于时间反演法,模拟颅内点声源发射脉冲以及超声传播过程,计算各个阵元接收到的时间差,按照后到先发的原则发射脉冲进行聚焦刺激。与传统相控阵聚焦相比,焦点偏移现象基本得到解决,焦域横向、纵向分辨率均有所提高,提高了声束聚焦精度和感应电场峰值。通过搭建实验平台,将两种聚焦方法所测得的声场归一化处理,验证了时间反演法能补偿焦点偏移,并通过实验证实了超声换能器声场和产生感应电场分布存在较高的一致性。基于真实颅脑结构的虚拟点源时间反演聚焦可以实现无创、精准、灵活的经颅磁声电刺激,有助于推动精准神经调控技术的发展。  相似文献   

8.
This paper presents an imaging method for the localization of the impact point in complex anisotropic structures with diffuse field conditions, using only one passive transducer. The proposed technique is based on the reciprocal time reversal approach (inverse filtering) applied to a number of waveforms stored into a database containing the experimental Green's function of the structure. Unlike most acoustic emission monitoring systems, the present method exploits the benefits of multiple scattering, mode conversion, and boundaries reflections to achieve the focusing of the source with high resolution. Compared to a standard time reversal approach, the optimal refocusing of the back propagated wave field at the impact point is accomplished through a "virtual" imaging process. The robustness of the inverse filtering technique is experimentally demonstrated on a dissipative stiffened composite panel and the source position can be retrieved with a high level of accuracy in any position of the structure. Its very simple configuration and minimal processing requirements make this method a valid alternative to the conventional imaging Structural Health Monitoring systems for the acoustic emission source localization.  相似文献   

9.
The spatial resolution of the focused field of a classical time-reversal mirror has a wavelength-order lambda diffraction limit. Previously reported results for subwavelength focus require either the full knowledge of the original source or the evanescent waves in the near field. Here it is shown that subwavelength focusing can be achieved without a priori knowledge of the original probe source. If the field is recorded at a few wavelengths away from the probe source, where the amplitude of the near field is too low for subwavelength focusing, it is shown that the low amplitude near field can be amplified and the spatial resolution improved, using the near-field time reversal (NTR) procedure introduced here. The NTR is performed from the phase of the spatial spectrum of the field recorded on an array around the original probe source using an analytical continuation for the amplitude of the spatial spectrum. Following theory, lambda/20 resolution is experimentally demonstrated with audible acoustic wavefields in the air.  相似文献   

10.
为研究颅骨中的剪切波对经颅聚焦超声的影响,该文利用Kelvin-Voigt固体声波方程并结合时间反转法,分别模拟了考虑剪切波和不考虑剪切波时,256-单元平面相控阵为实现超声经颅聚焦所需的相位调控,并将这两种相位调控都分别作用于考虑剪切波和不考虑剪切波时的聚焦情形。对这两种相位调控以及基于它们的经颅聚焦超声场的对比分析结果表明:聚焦深度较大时,剪切波对基于时间反转进行的相位调控影响较小;不过,剪切波对经颅聚焦超声场的强度分布影响较大,忽略剪切波会导致对焦域处声场聚焦强度的高估以及对颅骨附近声能量沉积的低估。  相似文献   

11.
A numerical experiment is carried out to study the focusing of a low-frequency (100–300 Hz) sound field in a shallow-water acoustic waveguide typical of an oceanic shelf. Focusing with the use of time reversal of broadband acoustic signals, which is called time reversal mirror (TRM) of waves, is considered along with focusing by phase conjugation (PC) of a monochromatic sound field. It is demonstrated that, in the case of focusing by the TRM method in the waveguide of interest, it is sufficient to have a single source-receiving element. The use of a vertical array improves the quality of focusing. The quality achieved in the latter case proves to be approximately the same as that achieved in the case of focusing by phase conjugation of a monochromatic field at a frequency identical to the carrier frequency of the broadband signals. It is also shown that, in a range-independent waveguide, intense surface waves considerably reduce the quality of focusing. This effect is most pronounced in the case of using phase conjugation.  相似文献   

12.
采用时反和时频差分OFDM的水声语音通信方法   总被引:1,自引:0,他引:1       下载免费PDF全文
周跃海  江伟华  陈磊  童峰 《应用声学》2015,34(4):283-290
针对水声信道多径、时变、多普勒等恶劣传输特点对水声语音通信的严重影响,本文采用多通道时间反转和时频差分OFDM进行水声语音通信技术方案设计,该方法首先通过多通道时间反转进行时间域和空间域多径聚焦,进而结合时频差分OFDM调制解调抑制残留多径的影响。由于无需采用信道估计和均衡算法,系统实现方便、复杂度低,同时对信道具有一定程度的稳健性。该方法语音压缩编码采用混合激励线性预测编码。仿真实验和海试实验表明了本文方案的有效性。  相似文献   

13.
提出了利用时间反转(时反)聚焦技术的水声无源材料插入损失测量方法。通过无试样及有试样情况下实现接收信号的时反聚焦,并对聚焦信号进行透射系数计算,获得试样的插入损失。由于时反原理可实现接收信号的空时聚焦,从而提高测量信混比,因此本方法适用于非自由场环境下材料声学参数的测量,尤其适用于低频条件下的声学参数测量。波导水池试验开展了对两块试样的测量,试样尺寸为1.1m×1.0m×5mm,测量频率范围为1—20kHz,通过测量值与理论值的对比验证了该方法的有效性。   相似文献   

14.
A method for time reversal focusing with variable depth and range based on mode extraction was proposed.First,the normal modes of acoustic propagation in the shallow water are extracted by modal decomposition from the probe signals received by a source receiver array.Furthermore,a diagonal matrix and a vector determined separately by the depth and the range of the probe source are extracted from the received acoustic field data.And time reversal focusing at different depths and ranges can be achieved by modulating the depth-dependent diagonal matrix and the range-dependent vector properly.Then the diagonal matrix and the vector are modulated separately according to the depth and the range of the expected focal location to construct a new acoustic field vector.When this new acoustic field vector is retransmitted by the source receiver array in time reversal order(or phase conjugation in frequency domain),focusing of the resulting acoustic field at the expected location rather than the origin of the probe source can be obtained.Numerical simulations in typical shallow water environment demonstrate the effectiveness of the proposed method.  相似文献   

15.
Toda S  Fujita T  Arakawa H  Toda K 《Ultrasonics》2006,44(Z1):e1151-e1155
A Lamb wave interdigital transducer mounted on a layered substrate composed of two plates, a thin piezoelectric ceramic plate and an acrylic plate, operating at a liquid-solid boundary, is investigated for ultrasonic nondestructive testing of the layer thickness in human teeth. A higher-order mode having a phase velocity higher than the longitudinal wave velocity in the human teeth can be used for nondestructive testing. In the combination of the two layers, the fourth mode of leaky Lamb wave is most favorable for a frequency-controllable radiation angle of an ultrasound beam into a water layer as an acoustic coupler. In the configuration of an acoustic delay line, the layer-thickness measurement in vivo, evaluated from the time interval between two reflected ultrasound echoes, is successfully realized under a thin water layer as the acoustic coupler.  相似文献   

16.
A method of 3-D image formation based on the use of radiation pulse sources and focusing systems with scanning during a pulse (BSP) has been described. These systems transform time signals into quasi-interference spatial structures. The BSP resolution power exceeds considerably the Raleigh criterion and depends neither on the distance to the object nor on the focusing system size.  相似文献   

17.
传统的高强度聚焦超声(HIFU)治疗中实际焦点和预设焦点容易出现偏移,为考察时间反转方法对HIFU治疗中焦点偏移的补偿效果,采用时域有限差分方法求解Westervelt方程,建立高强度聚焦声场数值模型。数值计算得到在人体软组织中进行HIFU治疗时,采用时间反转方法后焦点偏移距离最大仅为1.6 mm。脂肪层厚度及声源强度改变对时间反转聚焦精度影响不大,F数(焦点距离同换能器孔径的比值)降低时,焦点偏移减小。研究表明在人体软组织吸收系数和非线性系数范围内,时间反转方法可有效补偿焦点偏移,达到更好的聚焦效果。   相似文献   

18.
We have developed a new original technique to study the magnetization reversal dynamics of thin films with element selectivity in the nanosecond time scale. X-ray magnetic circular dichroism measurements in pump-probe mode are carried out taking advantage of the time structure of synchrotron radiation. The dynamics of the magnetization reversal of each of the layers of complex heterostructures (like spin valves or tunnel junctions) can be probed independently. The interlayer coupling in the studied systems has been shown to play a key role in the determination of the magnetization reversal of each individual layer.  相似文献   

19.
Diversity of biomedical applications of acoustic radiation force   总被引:1,自引:0,他引:1  
  相似文献   

20.
The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号