首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文建立了考虑激光线宽影响后腔衰荡的多指数吸收模型,推导出了对数衰荡函数的多项式拟合公式。  相似文献   

2.
相移光腔衰荡高反射率测量中的拟合方法   总被引:5,自引:0,他引:5       下载免费PDF全文
 分析了相移光腔衰荡技术中由锁相放大器探测光腔输出信号一次谐波的振幅和相位随调制频率的变化曲线。拟合结果发现,联合幅频和相频曲线构造同时含有振幅和相位信息的均方差拟合函数,不同频率拟合范围得到的衰荡时间平均值为0.791 μs,最大误差由分别用幅频或相频曲线拟合得到的衰荡时间误差的8%减小到1.3%,均方差仅为0.5%。通过在拟合函数中加入系统响应时间、系统初始相位等参数,避免了相移光腔衰荡中直腔实验时测量系统频率响应曲线,提高了测量精度。  相似文献   

3.
光腔衰荡方法是目前测量光学元件超高反射率(反射率>99.9%)的唯一方法。介绍了一种对光腔衰荡法中激光信号强度与时间关系的优化提取方法。设计了基于光腔衰荡法的光学元件超高反射比的测试系统,通过对采集的光腔衰荡曲线数据进行分段指数拟合,将光腔衰荡曲线数据分为5段,对每段指数拟合结果对应的R2 (R-square)和RMSE(root mean squared error)值进行对比分析,计算每段指数拟合的衰荡时间。实验结果表明:截取光腔衰荡曲线数据40%~60%部分拟合得到的结果最接近真实值,求得对应的腔镜的反射率为99.988 977%。最后通过与腔镜的自身反射率进行比较,表明该种数据拟合方法能有效地测量腔镜的反射率,并能减小实验数据本身带来的误差。  相似文献   

4.
与多光束干涉的理论推导不同,本文基于无源腔的Q值定义,根据能量守恒原理,对连续波腔衰荡技术测量原理进行了新的推导.根据推导结果,采用数值模拟的方式就入射光开、关时间对腔出射光功率变化线形的影响进行了分析.重点对衰荡腔充光不足情况下的衰荡线形进行了仿真和数据拟合.结果表明,衰荡腔充光不足会给测量带来误差,但进一步缩短入射光关断时间能减小这种误差.  相似文献   

5.
基于半导体激光器的光反馈效应,提出了光反馈光腔衰荡技术用于测量腔镜的高反射率。相对于没有光反馈的情况,光腔衰荡信号振幅提高了两个数量级,从而大大提高了高反射率测量精度。在四个衰荡腔长采用光反馈光腔衰荡技术测量得到的腔镜反射率非常一致,统计平均值为99.9356±0.0008%。通过实验比较了光反馈光腔衰荡和脉冲光腔衰荡技术。结果表明,光反馈光腔衰荡技术的测量精度比脉冲光腔衰荡技术高。  相似文献   

6.
衰荡腔测量中的腔参数选择   总被引:2,自引:1,他引:2       下载免费PDF全文
 基于谐振腔失调灵敏度参量随腔长的变化关系,提出了一种衰荡腔,它是由共焦腔将腔长缩短为原来的0.73得到的稳定腔。根据光束传输规律和失调腔矩阵方法,以及光腔衰荡法测量原理和曲线拟合方法,建立了腔长、腔镜角度失调下光腔衰荡法的反射率测量模型。通过数值模拟,研究了这种稳定衰荡腔中,腔微小失调对反射率测量结果的影响,并与相同失调情况下共焦衰荡腔的测量结果进行了对比分析。结果表明,这种稳定腔用作衰荡腔,测量结果受腔镜角度失调影响较大,而受腔长失调影响小;其长度较短,便于工程应用;衍射损耗较小,测量精度高。  相似文献   

7.
 为实现连续波腔衰荡光谱系统的工程化,设计了一套集信号调理、高速采样及数据处理为一体的高集成度数字信号处理(DSP)系统。该系统被用于取代常规连续波腔衰荡光谱系统中由高速数据采集卡及计算机组成的腔衰荡信号测试系统,完成对腔衰荡信号的获取与拟合。该系统最高能实现16 bits/80 MHz的信号采样,并能准确地由腔衰荡信号反演出腔衰荡时间。实验结果表明:结合现有的光反馈式连续波腔衰荡光谱系统,该系统能实现等噪声测量灵敏度为1.0×10-8 cm-1的吸收光谱测量,其重复测量精度可达3‰。  相似文献   

8.
建立了一套光腔衰荡原子束吸收光谱测量装置,并对Ba原子的6s6p1P1←6s6s1S0吸收谱线用光腔衰荡光谱方法进行了测量,得到了Ba原子在553.548nm不同温度下的吸收谱线线型.实验结果表明,该装置测量吸收灵敏度达到6×10-7. 关键词: 光腔衰荡 吸收光谱 Ba原子  相似文献   

9.
腔衰荡光谱技术(CRDS)作为一种具有高灵敏度高光谱分辨率的检测方法已被广泛用于痕量气体检测。而目前基于CRDS痕量气体检测多针对单一气体进行测量或通过多个激光器产生的多光束进行多种组分气体浓度测量。利用DFB激光器波长可调谐特性,通过强弱吸收峰结合,使用单光束实现了多种温室气体的腔衰荡光谱技术同步检测。由于大气中水汽和二氧化碳浓度较高,为实现同一衰荡系统对三种温室气体的同步测量,在平衡吸收损耗的基础上,选取1 653~1 654 nm内甲烷的强吸收峰与水汽、二氧化碳的弱吸收峰进行测量。通过光谱叠加反演矩阵,分别得到甲烷、水汽、二氧化碳的浓度。在计算测量灵敏度过程中发现,通过去除衰荡过程初期的部分数据点(过滤区间),会对噪声等效吸收系数产生影响。多数情况下,在测量灵敏度计算方面,列文伯格-马夸尔特算法(L-M)会优于离散傅里叶变换法(DFT);但当衰荡曲线的单指数性下降时,上述结论不一定成立。搭建了一个低精细度(F≈6×103)衰荡腔对上述结论进行了实验验证。相较于用于测量温室气体浓度的高精细度衰荡腔(F≈1×105),低精细度衰荡腔的衰荡速率较快,衰荡曲线的单指数性明显低于高精细度衰荡腔。实验表明,在过滤区间长度较短时,采用DFT算法计算得到的噪声等效吸收系数会小于L-M算法得到的结果。当过滤区间长度增加时,L-M算法得到的结果优于DFT算法。在受过滤区间长度影响方面,DFT算法的波动性要明显小于L-M算法。根据Allan方差分析,在512次采样平均(约8 s)下的最小噪声等效吸收系数进行计算,该CRDS装置测量灵敏度为2.4×10-10 cm-1。在25 ℃标准大气压下,对应甲烷、水汽、二氧化碳的测量灵敏度分别为0.64 ppbv,3.5 ppmv和4.0 ppmv。基于该CRDS装置,通过单光束多波长测量方法,利用光谱叠加反演矩阵,测得大气中甲烷、水汽、二氧化碳浓度分别为2.018,3 654和526 ppmv;而采用经典CRDS单波长测量得到的甲烷、水汽、二氧化碳浓度分别为2.037,3 898和630 ppmv。通过与温控调节波长,逐点扫描得到的光谱吸收曲线进行对比,采用多波长测量得到气体浓度进行复合拟合的光谱曲线残差小于单波长测量得到气体浓度进行简单拟合的光谱曲线残差。  相似文献   

10.
王春梅  李炯  龚天林  陈扬骎  杨晓华 《光学学报》2007,27(11):2087-2090
腔衰荡光谱技术(CRDS)不仅具有较高的测量灵敏度,还可对样品的绝对吸收进行测量。采用连续激光腔衰荡光谱技术,通过测量O2分子三重禁戒跃迁b1∑g X3∑g-(3,0)带RQ(5)谱线(波数17266.090 cm-1)处,极限真空及不同气压下的衰荡时间,利用逼近法得到空腔寿命为2.9174 ms,由此拟合获得其绝对吸收截面为1.4998(±0.0967)×10-26cm2,与先前的文献估计值一致。由空腔寿命获得的谐振腔高反镜的反射比为99.989(±0.001)%,较通常的测量方法更为精确,该实验条件下的等效吸收程长比几何程长增大了约9090倍。  相似文献   

11.
对NO3腔衰荡光谱(cavity ring-down spectroscopy,CRDS)探测系统中衰荡时间的准确提取方法进行了研究。对衰荡时间有效快速的提取可以提高CRDS测量的精度和速度。选取了五种常用的提取衰荡时间的拟合方法,分别为快速傅里叶变换法、离散傅里叶变换法、线性回归总和法、列文伯格-马夸尔特算法和最小二乘法。采用以上五种算法对带有不同大小白噪声的模拟衰荡信号进行拟合,并从受噪声影响情况、拟合准确性和精度、拟合速率,三个方面对五种算法的拟合结果进行对比和分析,结果表明列文伯格-马夸尔特算法和线性回归总和法准确度高、抗噪能力强,但列文伯格-马夸尔特算法拟合速率相对较慢。选取衰荡时间的5~10倍为衰荡信号的最佳拟合波形长度,此时五种算法拟合结果的标准偏差最小。采用外部调制二极管激光器及高反腔搭建CRDS探测系统,针对0.2%噪声的实验条件,选取线性回归总和法和列文伯格-马夸尔特算法对实际测量的实验数据进行处理。实验表明,线性回归总和法拟合准确度和精度与列文伯格-马夸尔特算法相似,但拟合速率比列文伯格-马夸尔特算法快约5倍。实验结果与模拟分析相吻合,表明线性回归总和法为适合我们实验条件的最佳拟合方法。  相似文献   

12.
针对传统腔衰荡光谱技术浓度获取率低,提出基于双重锁定的连续波腔衰荡吸收光谱技术.通过波长调制一次谐波信号将激光器的频率锁定到C_2H_2吸收线上,同时使用PDH锁频技术将衰荡腔锁定到激光器上,从而避免了测量过程中激光器的频率漂移和腔长的抖动,使测量结果更加精确;并且,由于双重锁定,单次衰荡事件的发生率,也就是浓度信息的获取率只受衰荡时间以及重新锁定时间限制,在本试验系统中采集速率可以达到30 k Hz,可以实现对气体浓度的快速测量.为了提高信噪比,采用Kalman滤波技术,对浓度信息进行实时处理,有效抑制了噪声,根据阿伦方差分析,探测灵敏度可以达到4×10~(-9)cm~(-1)(2 s平均).  相似文献   

13.
光腔衰荡技术与高灵敏吸收探测   总被引:3,自引:0,他引:3  
赵宏太  柳晓军  詹明生 《物理》2001,30(4):217-219
腔衰荡光谱技术是一种新兴的主灵敏吸收光谱探测技术,已经被广泛地应用于原子、分子、团簇等吸收光谱的测量,且可实现10^-6-10^-14cm^-1量级吸收的测量,文章综述了腔衰荡光谱技术的发展及在吸收光谱探测上的应用。  相似文献   

14.
在预混甲烷/空气燃烧的平面火焰炉上,采用脉冲式光腔衰荡光谱技术(cavity ring-down spectroscopy, CRDS)实现了对OH分子浓度的定量测量。根据光腔衰荡吸收光谱理论,选取OH的A2Σ+-X2Π(0,0)电子跃迁带中的P1(2)吸收谱线构搭建了一套激光波长在308.6 nm的脉冲CRDS实验装置。脉冲CRDS装置中的衰荡光腔是由一对反射率为99.7%的高反射镜组成且其衰荡腔的腔长为270 cm,并测量空腔(光腔中无火焰)的衰荡时间为2.33μs。通过理论分析影响浓度精确测量的实验参数,分别采用平面激光诱导荧光(planar laser induced fluorescence, PLIF)、相干反斯托克斯拉曼散射(coherent anti-stokes Raman scattering, CARS)和脉冲CRDS三种技术精确测量OH的有效吸收长度、高温火焰的温度和有效的光腔衰荡时间。当在平面火焰炉上燃烧预混的甲烷(1.1 L·min-1)和空气(15...  相似文献   

15.
搭建了基于近红外连续激光器的高灵敏度快速扫描光腔衰荡光谱仪(SC-CRDS)。通过压电陶瓷(PZT)快速扫描腔长,并用跟踪电路使腔长自动跟踪激光波长变化,实现衰荡光谱的快速测量。利用CH4在1653.73 nm(6046.95 cm-1)附近的光谱吸收峰,用该装置对CH4气体含量进行测量。通过测量多个光谱点确定吸收线中心吸收峰值和激光波长,并反馈补偿激光中心波长使其稳定在吸收线,成功解决了由于激光器波长/频率严重漂移导致的不能持续准确测量问题。利用标准浓度的CH4样品校准其1653.73 nm吸收峰谱线强度。该光腔衰荡光谱仪装置结构简单,性能稳定,CH4浓度检测限达到1.0×10-9,可用于长时间监测室外空气中的CH4浓度。  相似文献   

16.
在采用光腔衰荡技术实现痕量气体浓度测量时,设计了用于痕量气体浓度测量的比较式光腔衰荡气室。通过对双探测器的比较及对数线性化,利用所设计的系统及其气室对气体浓度在线测量并进行了实验分析。得出了同种气体不同浓度时光的吸收程度随时间变化的规律与特性,实现了测量分辨力为10^-9的测量结果。  相似文献   

17.
基于光腔衰荡光谱技术,建立了以共焦腔为衰荡腔的单波长反射率测量装置,该装置可用于精密测量全固体激光器高反射率腔镜的反射率,检测得到了高反腔镜在946nm的反射率。实验测得平凹镜和平面镜衰荡时间的平均值分别为1.624μs和821ns,平凹镜的反射率为99.794%,相对误差精确到10^-5;平面反射镜的反射率为99.800%,相对误差精确到10^-4。结果表明,光腔衰荡法可用于高反射率腔镜反射率的测量,与分光光度计测得的结果相比,具有非常高的测量精度。  相似文献   

18.
曹琳  王春梅  陈扬骎  杨晓华 《物理学报》2006,55(12):6354-6359
提出了简化的光外差腔衰荡光谱技术,避免了通常腔衰荡光谱对衰荡时间的直接测量,同时消除了腔镜损耗的共模直流信号的测量.理论上其测量灵敏度可以达到量子噪声极限,而且技术实现相对简单,更适合于分子振转光谱研究.此外,还在理论上分析了该光谱技术具有的Gauss线型的一次微分光谱线型的特点,并讨论了一些实验参量对谱线强度和线型的影响,进而给出了最佳实验参量. 关键词: 光外差 腔衰荡光谱  相似文献   

19.
为了实现痕量气体在线测量与分析,设计了光纤环路光腔衰荡多组分气体浓度在线测量系统;基于非线性光腔衰荡技术,利用所设计的系统对气体浓度在线测量并进行了实验分析;得出了同种气体不同浓度时光的吸收程度随时间变化的规律和1 ppb的分辨率.实验表明该方法对痕量气体的在线测量是有效的.  相似文献   

20.
腔长失调对光腔衰荡法测量精度的影响   总被引:11,自引:2,他引:11       下载免费PDF全文
 只考虑腔长失调因素下建立了反射率模拟测量的理论模型。根据高斯光束传输规律分析了腔长失调对衰荡腔模式耦合的影响,推导了腔长失调与谐振腔输出脉冲信号、衰荡信号与反射率之间的关系,模拟了腔长失调在±10mm范围内的光脉冲衰荡现象。结果表明:对于光敏面直径为0.2mm的高速探测器,为了保证10-6的测量精度,腔长的失调量应控制在±1mm之间。在光路调节中采用具有对数变换功能的示波器和动态范围较大的探测器,可以提高测量精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号