首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristics of hybrid fiber amplifier (HFA) are investigated. HFA is composed of three stages: short-length EDFA pre-stage, DCF Raman amplifier, and power boosting EDFA. HFA has low noise figure, high output power, and also wide input power dynamic range. Gain control method of HFA is presented experimentally, and the transient gain excursion is suppressed to less than 0.5 dB at 3 dB channel add-drop. HFA can be used as line amplifier in optical transmission link even combined with distributed Raman amplifier due to wide input power dynamic range. The transmission performance of HFA is better than EDFA by more than 1.0 dB of Q-factor in 720 km SMF transmission.  相似文献   

2.
A novel method of a filterless optical millimeter-wave (MMW) signal generation with frequency octupling via a nested multimode interference (MMI) coupler is proposed for Radio-over-fiber systems. By setting the DC bias voltage applied to the central arms of MMI-b and MMI-c accurately, the optical carrier can be completely suppressed. The OSSR can be as high as about 58 dB without optical filter and the radio frequency spurious suppression ratio (RFSSR) exceeds 32 dB, which is the best result as we know. Simulation results suggest that when the generated optical mm-wave signal is transmitted along the standard single-mode fiber, the eye diagram is still opened after being transmitted over a 50 km fiber.  相似文献   

3.
Reconfigurable optical add-drop multiplexer (ROADM) with the ability of dynamic configuration will be one of the core equipment for the future optical transport networks. This paper proposes an effective scheme for fully ROADM with parallel modularized structure and ability of upgrading. Each module consists of a Mach-Zehnder interferometer based on fiber Bragg grating (FBG), a 1 × 2 optical switch and a Y-model combiner. Optical signal with single wavelength or multiwavelength could be dropped or added at one drop port or add port by configuring the optical switch in each module. The proposed ROADM with four-stage parallel connection is designed and experimentally investigated to prove its performance and advantage in dynamic selection of the wavelengths and upgrading. It is also showed that this ROADM can also reduce the ununiformity of power at output port and drop port to improve the optical signal to noise ration (OSNR) of the whole system.  相似文献   

4.
An optical receiver with high sensitivity and linearity specially designed for Giga-bit communications over small-bandwidth high-attenuation multimode plastic optical fiber is presented. An automatic gain control transimpedance amplifier and linear post amplifiers are used to maintain a good performance with multilevel modulation. Using multilevel signaling and large-diameter integrated photodiodes make the presented optical receiver suitable for large core plastic optical fiber. For a wavelength of 675 nm, a sensitivity of −26.3 dB m (BER = 10−9) at 500 Mb/s is presented by a binary signal. A data rate of 1 Gb/s and a sensitivity of −19.8 dB m (BER = 10−9) are achieved with four-level pulse amplitude modulation.  相似文献   

5.
In this paper, we have investigated the wavelength division multiplexed (WDM) system using ring network topology. This network is used to increase the capacity with eight optical add/drop multiplexers (OADMs) by using dispersion compensating fiber and semiconductor optical amplifier (SOA) to achieve a distance up to 1600 km. It is observed that network shows the acceptable results at 15 Gbps data rate with 100 GHz channel spacing. The OADM nodes are also varied to investigate the network performance in the term of BER and Q-factor.  相似文献   

6.
Hongwu Yang  Junqiang Sun  Qiujiao Du 《Optik》2010,121(22):2044-2048
We propose and simulate a novel full-duplex radio-over-fiber system using a single light source at central station (CS). The scheme is employed to generate 60-GHz optical millimeter wave at CS for down-link transmission while the same optical carrier is reused at base station for up-link connection. There is no additional laser source for the upstream data generation in the base station. The bidirectional full-duplex 2.5 Gb/s data are successfully transmitted over 40 km standard single-mode fiber (SMF). The power penalty for the down-link data after transmission over 40 km SMF is less than 0.6 dB, while for the up-link data, the power penalty after transmission over 40 km SMF is neglected. This system shows good performance over long-distance delivery and has important applicable value in high radio frequency (RF) sector and multi-channel full-duplex system.  相似文献   

7.
In this paper, we propose an ultra narrow band fiber grating filter which is composed of two optical circulators and two fiber Bragg gratings (FBG). Through numerical simulation and experiment investigation, a narrow-band output spectrum with 1064 nm center wavelength and 0.017 nm bandwidth is obtained. It may find a certain application in the fields of free space optic communication, laser tuning and so on as we believe.  相似文献   

8.
We have experimentally generated optical orthogonal frequency-division multiplexing (OOFDM) signals by a phase modulator (PM). The generated OOFDM signal can tolerant higher nonlinear effects in fiber than that generated by an intensity modulator because of its lower peak-to-average power ratio (PAPR). It is shown that, by using a PM, the PAPR of the OOFDM signal has a 2-3 dB reduction and the input power in fiber can be improved over 3 dB.  相似文献   

9.
New type of optically controllable variable fiber optical attenuator based on thermo-optical effect in liquid cladding of optical fiber is described. The thermo-optical effect in liquid cladding optical fiber causes refractive index contrast changes in core–cladding interface, what enables to change the propagating optical signal power with temperature. The temperature change is achieved by fiber based heating element using laser radiation. Attenuation up to −12 dB was achieved in static dependence and dynamic response confirmed rise time up to 24 ms.  相似文献   

10.
A novel scheme to generate a 64 GHz optical millimeter (mm)-wave via a nested LiNbO3 Mach-Zehnder modulator with an 8 GHz local oscillator is proposed and simulated. Since the frequency response of the modulator and the local oscillator frequency are greatly reduced, the bandwidth requirements of the optical and electrical components in the transmitter are significantly decreased. The simulation results show that the generated optical mm-wave signal maintains good performance even after being transmitted over 20 km standard single-mode fiber.  相似文献   

11.
In this paper we demonstrate the feasibility to deploy a wavelength division multiplexing passive optical network (WDM-PON) of a 30 km standard single-mode fiber (SSMF-28) carrying 160 Gbps data in downstream and 40 Gbps through the uplink. The developed method is based on the comparison between two WDM-PON systems of 4 channels with the same characteristics, using two different formats of modulation in OLTs. The first system uses the NRZ-ASK in the downlink direction, while the second uses the NRZ-DQPSK.  相似文献   

12.
An electrical nonlinearity pre-compensation (ENPC) combined nonlinearity with chromatic dispersion method is introduced for coherent optical orthogonal frequency-division multiplexing (CO-OFDM) system. Comparing with existed only nonlinearity pre-compensation (NL Pre-comp) method, ENPC method is not only suitable for low-dispersion fiber system, but also effective for high dispersion fiber transmission system without optical dispersion compensation. For 40 Gbit/s 20 × 80 km standard single mode fiber (SSMF) system, ENPC method can improve the nonlinear threshold (NLT) (for Q > 10 dB) about 2.7, 1.2, and 1.0 dB, and the maximum Q factor about 1.2, 0.4, and 0.3 dB for 2, 8, and 16 ps/nm/km fiber systems, respectively. The method allow the CO-OFDM system can avoid using optical dispersion compensation even for high dispersion fiber system with higher input power, and the 2-step ENPC solution does not increase more computation complexity compared with NL pre-comp method.  相似文献   

13.
In a distributed Raman fiber amplifier (DRFA), Raman amplification allows a lower signal launch powers to transverse the span above the noise floor while still increasing the optical signal-to-noise ratio (OSNR). It improves the noise figure and reduces the nonlinear penalty of fiber systems. In this paper, we demonstrate a new trend of OSNR at different pump configurations: forward, backward and bidirectional pumping for DRFAs as a function of fiber length. We also present the variation of OSNR with both input pump power and input signal power. It is found that forward pumping provides the highest OSNR, reaching its maximum value of 37 dB. However, backward pumping provides the smallest OSNR that has its maximum of 22 dB and the bidirectional pumping provides the moderate OSNR between the others having its peak of 26 dB.  相似文献   

14.
Based on Galois Field (GF(q)) multiplicative group, a new coding scheme for Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes is proposed, and the new coding scheme has some advantages such as the simpler construction, the easier implementation encoding, the lower complexity of the encoding and decoding, the more flexible adjustment of the code length as well as the code rate and so forth. Under the condition of considering the characteristics of optical transmission systems, an irregular QC-LDPC (3843,3603) code to be suitable for optical transmission systems is constructed by applying the proposed new coding scheme. The simulation result shows that the net coding gain (NCG) of the irregular QC-LDPC (3843,3603) code is respectively improved 2.14 dB, 1.19 dB, 0.24 dB and 0.14 dB more than those of the classic RS (255,239) code in ITU-T G.975, the LDPC (32640,30592) code in ITU-T G.975.1, the regular SCG-LDPC (3969,3720) code constructed by the Systematically Constructed Gallager (SCG) coding scheme and the regular QC-LDPC (4221,3956) code at the bit error rate (BER) of 10-8. Furthermore, all the five codes have the same code rate of 93.7%. Therefore, the irregular QC-LDPC (3843,3603) code constructed by the proposed new coding scheme has the more excellent error-correction performance and can be better suitable for optical transmission systems.  相似文献   

15.
In this paper, the improvement method of the traditional optical spectrum analyzer (OSA) is demonstrated to measure the half-wave voltage of LiNbO3 phase modulator with low RF driving. Based on calculating the measured powers ratio of the carrier and first-order side band with optical spectrum analyzer (OSA), the phase modulation index is between 0.5 and 1.43 and the voltage of driving signal is lower than 0.796 V, the accurate characterization of the phase modulator is obtained. By using this method, the half-wave voltage of a LiNbO3 phase modulator had been measured in the frequency range of 26 GHz. And, our experimental results showed a good agreement between the measured data and those provided by the manufacturer in 9 GHz frequency range. It is an accurate and easy method to measure the half-wave voltages of a phase modulators, especially for measuring high the frequency response.  相似文献   

16.
A novel distributed optic fiber transduser for landslides monitoring   总被引:1,自引:0,他引:1  
Unstable slopes have been monitored since the beginning of the last century. Current electro-optic detection technology can achieve automatic monitoring remotely with high safety and includes such methods as time domain reflectometry, optical time domain reflectometry and Brillouin optical time domain reflectometry. However, these technologies cannot simultaneously meet the requirements of distributed sensing, high initial measurement accuracy, large sliding distance and high dynamic range. Based on the space frame theory of reinforced concrete beams, this study presents an innovative design for a distributed optic fiber sensor: a novel transduser with a bowknot. Using the optic fiber microbending loss mechanism and optical time domain reflectometry technology, bending and shear tests based on the combined fiber sensor are conducted, and the vertical displacement of midspan, optical fiber sliding distance and loss data under three different spans are collected. Feasibility study and economic analysis of the transduser used for landslide monitoring are also presented. The results show that the maximum sliding distance of our transduser is 21.8, 26.5 and 30.6 mm with corresponding initial accuracies of 1.2, 2.3 and 3.3 mm, and the dynamic ranges are 0-20.6, 0-23.2 and 0-27.3 mm. The cost of the transduser is economical at $0.15/m, which demonstrates promising economic application, high monitoring effectiveness and stability in monitoring civil works, such as slope, dam and tunnel construction and measurement.  相似文献   

17.
The optoelectronic integrated transmitter and receiver for 650 nm plastic optical fiber (POF) communication applications realized in 0.5 μm BCD (Biplor, CMOS and DMOS) process is first described in this paper. The 650 nm resonant cavity light emitting diode (RCLED) is used as light source. It is first proposed for optoelectronic integration of the transmitter by bonding RCLED to the driver chip. Temperature compensation technology is employed in the driver circuit to compensate for the modulation current. In the monolithic optoelectronic integrated receiver, large area multi-finger PIN photodetector (PD) that is compatible with standard IC process, transimpedance amplifier and post amplifier are presented. Measurement results show that the responsivity and capacitance of PD is 0.25 A/W and 5 pF, respectively. The sensitivity of receiver is −14.6 dBm at 180 Mb/s and BER is less than 10−9 for 650 nm input light by POF. A clear eye diagram is demonstrated for 180 Mb/s PRBS. These indicate that optoelectronic integrated chips can be employed in high-speed POF-based Fast Ethernet systems for broadband access network applications.  相似文献   

18.
In this paper, we present our experimental study on the optical alignment tolerance between the couplings of single-mode fibers (SMFs) connected with a double-side irradiation-induced self-written waveguide (SWW). The study firstly focuses on the coupling of two SMFs and then on the two fiber arrays (FAs) for parallel optical communication. The SWW was formed in dye-dispersed epoxy materials by the photopolymerization technique. Rhodamine 6G dye was dispersed in epoxy, which is commonly used in the photonic packaging industry as a bonding adhesive. Using double-side irradiated SWW, we found the alignment tolerance for such optical interconnect to relax significantly. All the formed SWWs were evaluated in terms of optical loss. In our study, up to 4 µm misalignment tolerance was allowed for only 1 dB loss penalty. In addition, the optical interconnect formed by this technique was also able to tolerate up to ± 10 µm lateral shift with only 1 dB extra loss. The wavelength-dependent loss (from 1520 to 1610 nm) and polarization-dependent loss were less than 0.4 dB. The double-side irradiated SWW-induced couplings between two FAs also provided low optical loss. They were found to be less sensitive to temperature changes, and no significant distortion in the digital signal transmission test was observed. We believe that the findings are useful and applicable to other dye-dispersed epoxy material systems for relaxing the alignment tolerance of the optical interconnects in various photonic packaging situations.  相似文献   

19.
In this paper, we propose a novel and cost effective system for optical millimeter-wave (mm-wave) generation and transmission of downstream data based on a gain switched laser (GSL). The GSL produces an optical comb spectrum that can be appropriately filtered to generate two optical sidebands spaced by more than 4 times the repetition rate of the GSL. These sidebands are modulated by baseband data and then transmitted via optical fiber to the remote antenna unit (RAU). At the RAU, the two sidebands are heterodyned using a photodetector to generate the electrical modulated mm-wave signal, before demodulation using self mixing. We demonstrate the distribution of 1.25 Gbit/s data OOK modulated onto a 60 GHz carrier, similar to that used in the IEEE 802.15.3c draft standard, over fiber lengths up to 62 km.  相似文献   

20.
All-optical clock recovery (CR) from 20 Gbit/s nonreturn-to-zero differential phase-shift-keying (NRZ-DPSK) signals are demonstrated experimentally by using a polarization-maintaining fiber loop mirror filter (PMF-LMF) and a semiconductor optical amplifier (SOA) fiber ring laser. Only by adjusting polarization controller (PC), NRZ-DPSK signals were conveniently and fast converted to pseudo return-to-zero (PRZ) signal via PMF-LMF. Then the PRZ signals are injected into the SOA fiber laser for CR. The recovered clock signals is with the extinction ratio (ER) of 10 dB and the root-mean-square (RMS) timing jitter of 750 fs in 231 − 1 long pseudorandom binary sequence (PRBS) NRZ-DPSK signals measurement. Moreover, the broad wavelength tunability of recovered clock stemmed from the use of SOAs as modulator and the gain medium are shown too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号