首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An optical power equalization amplifier with a wide dynamic range is proposed and demonstrated with no electronic control. It shows constant and equalized outputs when a power difference between input channels and a total input power are changed. It has more than a 15 dB dynamic range for input signals between −30 dBm and −5 dBm. The structure of this amplifier can be more promising when it is applied to a planar waveguide device.  相似文献   

2.
By using an optical circulator and C/L-band wavelength division multiplexer to recycle the C-band backward ASE, an L-band gain-clamped erbium-doped fiber amplifier is presented. We have experimentally studied the static gain clamping property of this amplifier. As the ASE feedback attenuation is set to 0, the gain at 1585 nm can be clamped at 18.84 ± 0.26 dB within dynamic range of 25 dB and the critical power reaches about −15.09 dBm. The gain variation and saturated output power at 1585 nm for 0 dB attenuation are 1 dB lower and 2.17 dB higher than those for 30 dB attenuation, which indicates that the L-band EDFA gain can be effectively clamped via the ASE injection technique.  相似文献   

3.
An erbium-doped fiber amplifier (EDFA) is simulated. The variation of gain with different parameters is obtained and the values of these parameters are optimized to achieve a maximum value of gain. A two-stage gain-flattened EDFA consisting of two EDFAs in series is also simulated. In the operating range of 1565-1610 nm, the flat gain of 46 dB is obtained.  相似文献   

4.
The gain flattening of the erbium doped fiber amplifier (EDFA) is one of the most important aspects in the EDFA which the gain is wavelength dependent. For the first time the limitation of EDFA gain optimizing for a 32-channel wavelength division multiplexing (WDM) systems is investigated and reported in this paper. In a 32-channel WDM system the most favorable flatness gain achieved was 23.16 ± 1.51 dB with an average noise figure of 5.70 dB. This outcome proposes that the method does not achieve a uniform spectral gain in a 32-channel WDM system that incorporates a bandwidth of around 25 nm. Based on the simulation results the intrinsic optimization of EDFA causes the poor SNR and peak signal power with great variation over a transmission distance of 480 km single mode fiber.  相似文献   

5.
The double-pass erbium-doped zirconia fiber amplifier (EDZFA) is proposed and demonstrated to provide a wide-band amplification as well as flat-gain operation in both the C- and L-band regions using only a single-gain medium. The proposed amplifier utilizes an erbium-doped zirconia fiber (EDZF) with erbium ion concentration of 2800 ppm as a gain medium. The medium is fabricated in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber through solution doping technique along with modified chemical vapor deposition (MCVD). Compared to a single-pass operation, the double-pass EDZFA shows a better gain performance. At input signal power of 0 dBm and the optimum EDZF length of 2 m, a flat gain of around 16 dB is achieved by the proposed double-pass amplifier with gain variation of approximately 2.5 dB throughout the wavelength range from 1530 to 1590 nm. However, the noise figure of the double-pass amplifier is slightly higher than that of the single-pass due to inefficient population inversion at the input part of the amplifier.  相似文献   

6.
Lin  J. M.  Ho  W. J. 《Laser Physics》2012,22(4):765-769
We propose and demonstrate a C-band Erbium-doped fiber amplifier (EDFA) using amplified spontaneous emission (ASE) power peaking-selective and feedback to achieve highly stabilized and wide dynamic range gain clamping performances. The gain of 16.20 ± 0.13 dB is obtained with the input signal power dynamic range of 30 dB and the maximum noise figure (NF) was 6.6 dB with the input signal power from −35 to −10 dBm. To investigate the gain variation for the probe signals, we applied a saturation tone signal to simulate 16-channel DWDM signals as it is added (dropped) into (from) EDFA. The gain variation of the proposed scheme at a appropriate ring-cavity loss (VOA = 5 dB) is less than 0.13 dB for the input signal power from −35 to −5 dBm and wavelength from 1530 to 1564 nm.  相似文献   

7.
We present the results of an investigation of optical gain and noise figure for simultaneous multi-channel amplification of an erbium doped fibre amplifier (EDFA) under optimized pump condition. Different pump configurations with varying input signal levels show interesting features on gain flatness. In the experiment, population inversion along the fibre length which determines the gain-spectra and noise characteristics of the amplifier is adjusted through optimized fibre length and injected pump power in order to minimize the gain-tilt at C-band. It is observed that bi-directional pumping manifests the best combination of low noise and high gain of EDFA which are useful as in-line repeaters in WDM network. We obtain 30 ± 1.5 dB intrinsically flat small signal gain from 1538 nm to 1558 nm band of wavelength with noise figure <4 dB for 16-channel simultaneous amplification in a single stage EDFA without gain flattening filter.  相似文献   

8.
Performance of a Bismuth-based Erbium-doped fiber amplifier is experimentally and theoretically investigated using 1480 nm pumping with double-pass scheme. In the theoretical analysis, the rate and power propagation equations are solved to examine the optimum length for the C-band operation as well as the gain and noise figure characteristics. The calculated small signal gain is 38 dB with gain variation of less than 3 dB. The measured gain is 4 dB lower due to spurious reflections which were ignored in the theoretical analysis. At input signal power of 0 dBm, a gain of 14.5 dB is obtained experimentally with gain variation of less than 1 dB within the wavelength region from 1530 to 1565 nm. The noise figure is less than 12 dB within this region.  相似文献   

9.
The L-band erbium-doped fiber amplifier (EDFA) of low noise figure and high clamped-gain using gain-clamped and double-pass configuration is presented in this paper. A total of five different configurations of EDFAs by reflection scheme with single forward pumping schemes are examined and compared here. Among these configurations, we first find the configuration of 1480-nm pumped L-band EDFA with optimum gain and noise figure value. To further minimize the gain variation, a fiber Bragg grating (FBG) with 1615-nm center wavelength and 1-nm bandwidth is determined and added in double-pass L-band EDFA. The gain variation and maximum noise figure of EDFA while channel dropping is investigated. As the number of channel dropping from 32 to 4, the L-band type-A EDFA keep the variation of gain within 2.9 dB and the maximum noise figure below 5 dB with each channel’s input power of −23 dBm.  相似文献   

10.
Space radiation effect on EDFA for inter-satellite optical communication   总被引:1,自引:0,他引:1  
The erbium-doped fiber (EDF) has been irradiated by electron with a dose of 1000 krad to analyse the space radiation effect on EDF amplifier (EDFA) in inter-satellite optical communication. This is the first work to analyse the effect on actually applied systems. Three critical parameters of EDFA, most important for external module subsystems, have been tested. The output power comes down to −57.21 dBm and the noise figure (NF) climbs up to 18.14 dB at dose 1000 krad, when the input power is −2.00 dBm. Although there is a strong ability to recover after the radiation experiment, EDFA deterioration is really huge. Apart from that, the central wavelength of EDFA never changes. To guarantee the accuracy of analysis of the radiation effect on EDFA, WDM coupler and isolator are also irradiated with the EDF at the same time. According to the results of all the tests, the EDFA could be directly used in the low-radiation dose orbits if doses are less than 20 krad. And the radiation experiment data will also be a good reference for the design of the actual systems in inter-satellite optical communication with different dose orbits.  相似文献   

11.
In a distributed Raman fiber amplifier (DRFA), Raman amplification allows a lower signal launch powers to transverse the span above the noise floor while still increasing the optical signal-to-noise ratio (OSNR). It improves the noise figure and reduces the nonlinear penalty of fiber systems. In this paper, we demonstrate a new trend of OSNR at different pump configurations: forward, backward and bidirectional pumping for DRFAs as a function of fiber length. We also present the variation of OSNR with both input pump power and input signal power. It is found that forward pumping provides the highest OSNR, reaching its maximum value of 37 dB. However, backward pumping provides the smallest OSNR that has its maximum of 22 dB and the bidirectional pumping provides the moderate OSNR between the others having its peak of 26 dB.  相似文献   

12.
We propose a hybrid C-band erbium-doped fiber amplifier (EDFA) and L-band Raman fiber amplifier (RFA) using a single pump laser diode. The optimum pump sharing ratio to EDFA/RFA is 1/10 with a total pump power of 660 mW. Using multiple fiber Bragg gratings (FBGs) with various reflectivities at different positions along the dispersion compensation fiber, the optimum dispersion compensation and power equalization for C + L-band channels are simultaneously realized. With an input power of −20 dBm/ch, the signal power variation among the channels is reduced from 9.8 dB to less than ±0.5 dB. Two pump reflectors are introduced to increase the pumping efficiency.  相似文献   

13.
Automatic gain control method in Raman amplifier with multi-wavelength pumping scheme is presented. Monitoring of several channel power and feedback pump control is used in the gain control method. The condition to minimize the gain deviation is investigated by numerical simulation. Two monitoring channels are necessary to confine gain deviation in ±0.2 dB at two pumps C-band Raman amplifier. In the experiment, gain deviation of 1.5 dB is controlled to 0.2 dB at 38/40 channels drop, and fast suppression of transient gain excursion is achieved.  相似文献   

14.
The performance of Brillouin optical time domain reflectometry (BOTDR) affected by different pump power and direction of erbium doped fiber amplifier (EDFA) is experimentally demonstrated. A temperature error of 0.5 °C and spatial resolution of 10 m is obtained over 80 km sensing fiber with EDFA. The temperature resolution and dynamic range of BOTDR with backward pumped EDFA is better than forward pumped EDFA. Within the range of pump power, the resolution of BOTDR can be improved by increasing pump power.  相似文献   

15.
WDM用增益平坦的高增益低噪声双段级联掺铒光纤放大器   总被引:6,自引:4,他引:2  
给出了设计波分复用(WDM)用高增益、低噪声和宽带宽增益平坦的双段级联掺铒光纤放大器(EDFA)的一般步骤和方法.通过优化设计各种参量,研制出了一台高增益、低噪声和宽带宽增益平坦的双段级联EDFA样机,实现了从1524.8~1561.4 nm共36.6 nm带宽内±0.325 dB的平坦增益,0 dBm输入时,饱和输出功率大于15 dBm的高功率输出;噪声指数低于5 dB.  相似文献   

16.
The paper presents an experimental investigation of the gain spectrum of an erbium-doped fiber amplifier (EDFA) considering different system configurations, which include single-pass, double-pass, and double-pass with tunable band-pass filter (TBF). The role of TBF is to suppress the undesired amplified spontaneous emission (ASE). Both co- and counter-pumping schemes are considered with a 1480 nm laser diode as the pump and a suitable tunable laser source as the signal source. The results indicate that the signal achieves an average of 14 dB higher gain in the case of double-pass amplification with the implementation of a TBF. However, the pumping scheme hardly becomes of much importance in influencing the gain characteristics.  相似文献   

17.
带光隔离器的掺铒光纤放大器性能分析   总被引:9,自引:3,他引:6  
马晓明 《光子学报》2002,31(2):178-182
本文通过速率方程对带光隔离器的掺铒光纤放大器(EDFA)的性能进行了理论分析.由于光隔离器有效地抑制了反向传输的放大自发幅射(ASE),从而改善了掺铒光纤放大器的增益、噪音系数和输出功率等性能,分析结果表明光隔离器加在最佳位置时,可使小信号增益提高约5dB,噪音系数降低约1.6dB.  相似文献   

18.
抽运方式对混合拉曼光纤放大器性能的影响   总被引:2,自引:2,他引:0  
通过实验比较了前向抽运拉曼光纤放大器与掺铒光纤放大器组成的混合放大器、后向抽运拉曼光纤放大器与掺铒光纤放大器组成的混合放大器的性能。实验采用75km标准单模光纤作为增益介质。采用20信道(符合ITU-T建议的波分复用信号),波长为1537.377~1560.605nm,作为混合放大器的测试信号。20信道总功率-2.86dBm,每一信道用2.5Gb/s、码长2^7-1的非归零码通过电吸收调制器(EA)进行外调制。实验结果表明,前向抽运方式混合放大器的性能优于后向抽运方式的混合放大器,其中噪声系数的改善值为2.28~6.55dB。采用前向抽运时,各信道的增益同后向抽运相比,增加值均大于5dB。但不论采取那种抽运方式,采用混合放大的形式,各信道的光信噪比均大于26.9dB。  相似文献   

19.
We experimentally study both reshaping of nonreturn-to-zero (NRZ) signal and NRZ to pseudoreturn-to-zero (PRZ) format conversion based on self-phase modulation of a semiconductor optical amplifier (SOA) and detuning an optical bandpass filter (OBF). When an OBF with 1 nm bandwidth is blue shifted by 0.8 nm, the distortion of the amplified NRZ signal at 10 Gbit/s is shown to be eliminated completely. When an OBF with 0.32 nm bandwidth is red shifted by 0.42 nm from the carrier frequency, NRZ-to-PRZ conversion at 10 Gbit/s is obtained. A holding beam is used to suppress the SOA noise and improve the output extinction ratio (ER). The output ER of both the reshaped NRZ and the converted PRZ is larger than 10 dB when the signal wavelength is longer than 1540 nm, and an input power dynamic range from −7 dBm to 2 dBm is obtained at a signal wavelength of 1563.6 nm. The average power of the reshaped NRZ signal is about 3 dBm at an input power dynamic range of 13 dB. The amplitude fluctuation of the converted PRZ signal is around 1.6 dB.  相似文献   

20.
A multichannel fiber-grating-based optical limiting amplifier module is proposed. Dual-wavelength, hybrid data rate transmission is demonstrated with 30 dB input dynamic range. For 5.0 and 2.5 Gbit s dual-channel transmission in a 200 km single-mode fiber, power penalty due to gain competition between channels and backreflection noise is less than 0.6 dB compared to the receiver sensitivity of 0 km, 5.0 Gbit per second single-channel operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号