首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 206 毫秒
1.
高硅氧发光玻璃因具有较好的热稳定性、化学稳定性等优点,成为极具潜力的荧光材料。针对其仍存在发光强度较弱的问题,从与发光性质紧密相关的制备工艺出发,分析各关键工艺参数对高硅氧玻璃发光性质的影响具有重要的意义。本文制备了关键工艺参数不同的Eu2+/Dy3+共掺高硅氧发光玻璃,通过测试微孔表面结构参数、发射光谱和红外吸收光谱等,研究了分相温度、溶液离子浓度和烧结温度等制备关键工艺参数对高硅氧发光玻璃光致发光性质的影响。当分相温度不同时,多孔玻璃微孔表面结构参数和高硅氧玻璃的发射光谱表明,分相温度通过影响多孔玻璃的比表面积间接的影响高硅氧玻璃的发光性质,多孔玻璃比表面积数值越大,高硅氧玻璃发光强度越大。当溶液离子浓度不同时,高硅氧玻璃的发射光谱表明,当溶液中Dy3+浓度增加,高硅氧玻璃中Dy3+和Eu2+发光增强;当Dy3+浓度大于0.1mol·L-1时,由于Dy3+的发光出现浓度猝灭效应,高硅氧玻璃整体发光强度减弱。当烧结温度不同时,高硅氧玻璃的发射光谱和红外吸收光谱表明,随着烧结温度升高,高硅氧玻璃中—OH残留量减少,发光强度增强;当烧结温度大于1 000℃时,高硅氧玻璃出现析晶,发光强度减弱。  相似文献   

2.
采用高温熔融法和热处理工艺制作了含有GdF3纳米晶的氧氟微晶玻璃。在386 nm激发下,Dy3+掺杂氧氟微晶玻璃的发光强度明显增强,且蓝光对黄光的发光强度比逐渐增大,表明Dy3+已进入到GdF3纳米晶中。在980 nm激光器泵浦下,Er3+,Yb3+共掺氧氟微晶玻璃的上转换发光随着热处理温度的升高明显增强,Er3+的上转换发光出现明显的Stark分裂现象,这亦说明Er3+已进入到GdF3纳米晶相中。通过研究上转换发光强度与泵浦功率的关系,确定绿光上转换发光为双光子过程。  相似文献   

3.
陈鸿  李晨霞  华有杰  徐时清 《发光学报》2013,34(10):1324-1327
采用高温固相法制备了一种新型的白光LED用Ca3Si2O4N2∶Eu2+,Ce3+,K+荧光粉。利用X射线衍射仪对样品的物相结构进行了分析,结果表明:Ce3+和K+离子的掺杂没有改变Ca3Si2O4N2∶Eu2+荧光粉的主晶相。利用荧光光谱仪对样品的发光性能进行了测试,发现样品在355 nm激发下得到的发射光谱为峰值位于505 nm的单峰,是Eu2+离子5d-4f电子跃迁引起的。Ca3Si2O4N2∶Eu2+荧光粉通过Ce3+和K+离子的掺杂,发光明显增强。当Ce3+的摩尔分数为1%时,荧光粉的发光强度达到最大值,是单掺Eu2+离子荧光粉发光强度的168%。通过光谱重叠的方法计算Ce3+→Eu2+能量传递临界的距离为2.535 nm。  相似文献   

4.
同时可作为磁共振成像造影剂与近红外余辉光学成像光学探针双功能的纳米粒子,在生物医学领域具有重要的应用价值。采用自蔓延燃烧法制备了不同掺杂浓度的GdAlO3x%Cr3+及GdAlO3∶1%Cr3+, y%Eu3+近红外长余辉发光纳米粒子。并采用X射线衍射、扫描电子显微镜、激发和发射光谱及发光动力学分析等技术手段,较系统地研究了其微结构及光学特性。实验结果表明,Cr3+取代了GdAlO3中的Al3+的格位,单掺样品的平均粒子尺寸约为202 nm。GdAlO3x%Cr3+样品的激发谱显示,激发峰来源于Cr3+和Gd3+的跃迁;在583 nm的激发下,在650~750 nm近红外范围内,出现四个近红外光发射峰。其中,725 nm处的发射峰归属为禁戒跃迁2E到4A2的零声子线, 700和750 nm处的发射峰则为声子边带的发射。在0.2%~2.0%的掺杂浓度范围内,随着Cr3+掺杂浓度的增加,这些发射峰的强度先增强后减弱,最优浓度为1%。而位于735 nm处的发射峰强度随Cr3+浓度增大而增大,其归属于Cr3+-Cr3+对的发光。同时,单掺样品可观察到位于725 nm的长余辉发光,其中GdAlO3∶1%Cr3+纳米粒子的余辉时间最长,并超过30 s。在上述Cr3+最优浓度(1%)基础上,通过Eu3+取代GdAlO3基质中Gd3+的格位,实现了Eu3+/Cr3+共掺杂。实验发现,在266 nm激发下,在红光区域范围内可观察到以位于614 nm处的发射为主的一系列发射峰。尤其,由于存在Eu3+到Cr3+的能量传递,在近红外区出现了位于725 nm处Cr3+的近红外发射峰。当Eu3+浓度为13%时,与Cr3+单掺杂样品相比,其样品的平均粒子尺寸虽然减小到167 nm,但在275 nm紫外光照射5 min停止后,发现共掺样品在位于725 nm处Cr3+的余辉发光强度明显增强。通过比较分析单掺和共掺样品的吸收和发射光谱及发光动力学的结果,验证了由于Eu3+到Cr3+的持续能量传递可引起较显著地近红外余辉发光增强的结论。同时,该研究为设计新型的近红外长余辉发光纳米材料提供了新的思路。  相似文献   

5.
采用高温熔融法制备了Dy3+或Tb3+单掺和Dy3+/Tb3+共掺硅酸盐氟氧闪烁玻璃。通过对傅里叶变换红外光谱、透射光谱、光致激发和发射光谱、X射线激发发射光谱及荧光衰减曲线的分析,研究Dy3+与Tb3+之间的能量传递关系以及Dy3+对Tb3+激活硅酸盐氟氧闪烁玻璃发光性能的影响。实验结果表明:Dy3+/Tb3+共掺硅酸盐氟氧闪烁玻璃具有较高的密度和良好的可见区透过率,玻璃的网络结构是由[SiO4]四面体和[AlO4]四面体连接构成。在紫外光激发时,Dy3+单掺玻璃的发光源于Dy3+的4F9/2→6H15/2(483 nm),6H13/2(576 nm)的跃迁发射,而Tb3+单掺玻璃的发光则源于Tb3+的5D4→7F6(489 nm),7F5(544 nm),7F4(586 nm)和7F6(623 nm)的跃迁发射。对于Dy3+/Tb3+共掺玻璃,发射光谱则主要由Tb3+的荧光发射组成。通过对不同波长紫外光激发的发射光谱分析发现,Dy3+/Tb3+共掺闪烁玻璃中存在多种形式的能量传递。在以Dy3+的特征激发452 nm为激发波长时,Tb3+单掺玻璃的发光很弱。但随着Dy3+的引入,通过4F9/2(Dy3+)→5D4(Tb3+)的能量传递,Tb3+发光得到敏化增强。Dy3+/Tb3+共掺玻璃的发光强度随着Dy2O3含量的增多而增强,Dy2O3含量为1 mol%时达到最大,更高Dy2O3含量的样品由于Dy3+的浓度猝灭,减少了向Tb3+的能量传递,发光强度减弱。当激发波长减小到350 nm时,Dy3+和Tb3+均被激发到更高的能级6P7/2(Dy3+)和5L9(Tb3+),此时除了4F9/2(Dy3+)→5D4(Tb3+)的能量传递外,还出现了5D4(Tb3+)→4F9/2(Dy3+)的能量回传。Dy3+掺杂浓度较低时,Dy3+→Tb3+能量传递作用较强,Tb3+发光得到敏化增强。随着Dy2O3含量的增多,Tb3+→Dy3+能量传递作用增强。当Dy2O3含量超过0.4 mol%时,Tb3+→Dy3+能量传递强于Dy3+→Tb3+能量传递,减少了Tb3+的辐射跃迁发光,因此Dy3+/Tb3+共掺玻璃的发光强度开始减弱。由于Gd3+向Dy3+或Tb3+均可进行有效的能量传递,因此在以Gd3+的特征激发274 nm为激发光时,Dy3+/Tb3+共掺玻璃中出现了Dy3+和Tb3+对Gd3+传递能量的竞争。随着Dy2O3含量的增多,Tb3+所获得的能量不断减少,同时伴随着Tb3+→Dy3+能量回传和Dy3+之间的无辐射交叉弛豫作用,Dy3+/Tb3+共掺玻璃的发光强度不断减弱。对Dy3+/Tb3+共掺闪烁玻璃中Tb3+的5D4→7F5荧光衰减曲线分析还发现,随着Dy2O3含量的增多,Tb3+的荧光寿命从2.24 ms缩短到1.15 ms,曲线从单指数形式变为双指数形式,进一步证明玻璃中存在5D4(Tb3+)→4F9/2(Dy3+)的能量回传。X射线激发发射光谱显示,Dy3+的引入对Tb3+激活闪烁玻璃的辐射发光具有很强的负面影响,而这种负面影响不足以通过Dy3+→Tb3+能量传递来弥补,因此Dy3+/Tb3+共掺玻璃的辐射发光强度随着Dy2O3含量的增多而不断减弱。由此可见,在Tb3+激活硅酸盐氟氧闪烁玻璃中,不宜将Dy3+作为敏化剂,用于增强Tb3+的发光。  相似文献   

6.
共掺杂痕量的Tb3+,能使Y2O2S:RE3+ (RE3+=Eu3+、Sm3+、Dy3+等)磷光体的阴极射线和254nm紫外光激发下发光效率明显增强,此类增强的特点是:Tb3+浓度低(几十ppm),增强倍数高(1—6倍)和被敏化离子种类多。对一定浓度的痕量Tb3+,Sm3+和Dy3+浓度在10-5—10-2范围内,增强倍数为常数,而Eu3+随着浓度的增加、增强倍数逐渐减小,这表明Tb3+→RE3+不是共振能量传递。从激发光谱和Tb3+各条谱线强度变化的比例可判断能量传递不是光的再吸收。根据阴极射线激发后的热释光曲线以及增强倍数与温度(室温到液氮温度)关系实验,提出了能量传递模型。认为是Tb3+加入后形成等电子陷阱。它对空穴有大的俘获截面,并可以束缚一个激子。Tb3+→RE3+不是空穴类型的能量传递,而是在热扰动下束缚激子变为自由激子后引起的激子能量传递。  相似文献   

7.
在还原气氛中采用高温熔融法制备了Eu2+-Dy3+共掺硅酸盐玻璃,热处理后得到了Eu2+-Dy3+共掺透明SrSiO3微晶玻璃。测试了样品的激发光谱和发射光谱,研究了不同Eu2+-Dy3+物质的量比下微晶玻璃发光的变化并计算了对应的色坐标。研究发现,样品发射光谱范围在400~600nm,其中400~550nm(绿光)的宽发射谱带来自Eu2+的5d→4f跃迁,而位于483nm(蓝光)和575nm(黄光)的尖峰则来自Dy3+的4F9/2→6 H15/2和4F9/2→6 H13/2跃迁;在紫外(UV)光(365nm)激发下通过调控Eu2+-Dy3+物质的量比可得到发白光的微晶玻璃,当Eu2+-Dy3+物质的量比为1∶8时,Eu2+-Dy3+共掺SrSiO3透明微晶玻璃所发白光最佳,对应的色坐标(0.268,0.356)位于CIE标准色坐标图的白光区域且最接近理想白光。结果表明,Eu2+-Dy3+共掺SrSiO3透明微晶玻璃可作为一种潜在的白光发光二极管用基质材料。  相似文献   

8.
稀土掺杂发光材料一直是科研领域研究的热点,被广泛应用于白光LED、温度传感、显示显像、新能源和激光等领域。基质的结构对于稀土离子光致发光特性有非常重要的影响,在众多发光基质材料中,硼酸盐具有透光范围宽、光学损伤阈值高、较好的热稳定性和化学稳定性等优点。碱土-稀土金属硼酸盐Sr3Y2(BO3)4具有出色的光学性能,对其发光性能的研究具有重要意义。稀土离子Eu3+具4f6电子层,是一种典型的下转换发光中心离子,常被选作红色发光材料的激活剂。Dy3+具4f9电子层,也是一种典型的下转换发光中心离子,在紫外光激发下,在蓝色光区和橙色光区有较强的荧光发射。采用高温固相法合成了Sr3Y2(BO3)4∶Eu3+/Dy3+荧光粉,通过XRD和SEM对样品的结构和形貌进行了表征,XRD结果表明,1 000 ℃烧结5 h,H3BO3过量20%为最佳制备条件,且少量的Eu3+和Dy3+掺杂并未改变Sr3Y2(BO3)4的晶格结构。SEM图像表明Sr3Y2(BO3)4基质的平均晶粒尺寸为2~4 μm,10%Eu3+单掺和5%Eu3+/5%Dy3+双掺样品与基质Sr3Y2(BO3)4的SEM图像相比,形貌和尺寸并没有发生明显的改变。Sr3Y2(BO3)4∶Eu3+荧光粉的发光结果表明,分别在395和466 nm激发下,浓度为5%,10%和15%的Eu3+单掺Sr3Y2(BO3)4荧光粉的主要发光位于593和613 nm的红光发射,峰强度随着Eu3+浓度的增加呈现先增加后降低的变化形式,掺杂浓度为10%时发光强度最大,说明存在浓度猝灭现象。色坐标结果显示,激发波长由395 nm变化到466 nm,Sr3Y2(BO3)4∶Eu3+荧光粉的发光颜色从橙红色向红色转变。引入Dy3+后,Sr3Y2(BO3)4∶Eu3+/Dy3+样品的发射光谱出现Dy3+的486 nm的蓝光发射(4F9/2→6H15/2)和576 nm的橙光发射(4F9/2→6H13/2),并且随着Dy3+浓度的增加,对Eu3+的5D0→7F1, 2, 3, 4跃迁有抑制作用。色坐标结果显示通过调整掺杂离子Eu3+和Dy3+的比例可实现Sr3Y2(BO3)4∶Eu3+/Dy3+荧光粉的颜色从红色区域向橙色区域转变,说明其在显示方面具有良好的应用前景。  相似文献   

9.
杨志平  赵引红  梁晓双  刘鹏飞  吕梁 《发光学报》2013,34(10):1279-1282
采用高温固相法制备了Ca10Li(PO4)7∶Dy3+发光材料,研究了Dy3+在Ca10Li(PO4)7基质中的发光特性。XRD测量结果表明,烧结温度为1 050℃时所制备的样品为纯相Ca10Li(PO4)7晶体。从激发谱可以看出样品主激发峰位于349 nm(6H15/2→6P7/2),363 nm(6H15/2→6P5/2),385 nm(6H15/2→6M21/2),样品可被UVLED管芯有效激发。发射谱由位于481 nm(蓝)和572 nm(黄)的两个峰组成,对应的能级跃迁为4F9/2→6H15/2、6H13/2。研究了不同Dy3+掺杂浓度对发光强度的影响,当Dy3+的摩尔分数为10%时发光最强。掺入Ce3+作为敏化剂,Ce3+→Dy3+发生共振能量传递,当掺杂量为10%Dy3+、14%Ce3+时,样品发光最强,其强度为单掺10%Dy3+时的13.4倍,发光颜色由黄白变为蓝白。  相似文献   

10.
采用高温固相法制备了Eu2+,Cr3+单掺杂及共掺杂的SrAl12O19发光体,研究了它的发光性质和能量传递动力学过程。Eu2+的5d→4f发射峰位于400 nm,与Cr3+位于350~450 nm波长范围的4A2→4T1的吸收带有显著的光谱重叠,有利于Eu2+→Cr3+的能量传递发生,从而将来自于Eu2+离子的紫光转换为Cr3+的深红光发射。在共掺杂的样品中,当激发Eu2+时观察到Cr3+离子的2E→4A2红色线谱发射。当监测该红色线谱发射时,激发光谱中包含有Eu2+的吸收,证明了在SrAl12O19体系中Eu2+→Cr3+能量传递的存在。能量传递导致Eu2+的荧光寿命随Cr3+浓度的增加而缩短,计算表明能量传递效率随Cr3+浓度增加而提高,当Cr3+浓度为5%时能量传递效率可达到50%。  相似文献   

11.
制备了EuAl3(BO3)4晶体和Dy3+:EuAl3(BO3)4晶体,并且研究了它们的荧光性质.EuAl3(BO3)4晶体具有强的红光发射.在Dy3+掺杂的EuAl3(BO3)4晶体中,Dy3+对Eu3+的荧光有很强的敏化作用,提出了敏化作用的机制是能量的共振传递.Dy3+敏化作用的最佳掺杂浓度为0.2,高于0.2时,由于Dy3+的浓度焠灭效应,DyxEu1-xAl3(BO3)4晶体中Eu3+的613 nm发射峰强度急剧下降.  相似文献   

12.
利用共沉淀方法制备了Eu3+/Yb3+单掺和共掺的ZrO2粉体材料,研究了煅烧温度和掺杂浓度对结构和发光性质的影响。XRD结果表明:所制备单掺样品含有单斜相和四方相2种不同结构,随着热处理温度的升高,四方相向单斜相转变,经1 150℃处理后,四方相消失,呈现单一的单斜相;Yb3+离子的掺入有稳定ZrO2四方相的作用,随着掺杂浓度的增加,单斜相转变为四方相。由于晶相的不同,Eu3+处在四方相和单斜相2种发光中心,二者发光性质不同。Eu3+/Yb3+共掺后,在270 nm激发Eu3+时,观测到了Yb3+在近红外波段(980 nm)的发光,同时证实Eu3+的激发光谱和Yb3+的激发光谱相一致,表明存在Eu3+到Yb3+的能量传递,交叉弛豫和共合作能量传递过程是其可能的能量传递机理。  相似文献   

13.
硼酸盐玻璃中某些稀土离子的浓度效应及其能量传递过程   总被引:2,自引:0,他引:2  
本文系统地报道了硼酸盐玻璃中Ce3+、Sm33+、Eu3+、Ga3+、Tb3+、Dy3+浓度效应,观察到Eu3+、Gd3+、Tb3+在硼酸盐玻璃中随浓度增加其发光强度增强,而Ce3+、Sm3+、Dy3+当其浓度增加到一定数值后,发光强度反而减弱,初步探讨了不同浓度效应的原因.本文还观察到硼玻璃中某些稀土离子对Eu3+、Tb3+离子发光的敏化作用,及讨论了Gd3+和Eu3+、Tb3+之间的能量传递过程,计算其能量传递的效率和几率.估计了能量传递的规律机理.  相似文献   

14.
采用高温熔融法制备了镝离子掺杂氟硼酸盐玻璃荧光体,利用积分球绝对光谱测试系统,在453 nm蓝色激光二极管激发下,对玻璃荧光体的荧光光谱进行表征,解析出玻璃荧光体的相关绝对荧光参量。测试与计算结果表明,1.0 Wt% Dy2O3掺杂玻璃荧光体在功率15.81 mW的蓝色激光激发下,净发射光谱功率是286.91 μW,发射光子数为17.17×1014 cps,其荧光量子产率达到25.86%。为提高玻璃荧光体对泵浦激光的利用率,减少残余激光成分,进而改善组合光品质,制备了大体积的1.5 Wt% Dy2O3掺杂玻璃荧光体,在高功率的蓝色激光激发下获得白色照明效果,该玻璃荧光体在激发功率分别为56.0和252.7 mW的激光激发下,组合荧光对应的色坐标分别是(0.316, 0.287)和(0.303,0.268)。激光激励下的高效白色发光表明Dy3+掺杂氟硼酸盐玻璃荧光体在激光照明领域具有良好的应用前景。  相似文献   

15.
采用高温熔融法制备了一系列Ce3+/Sm3+共掺透明微晶玻璃,并研究了其发光特性。在微晶玻璃中Ce3+呈现出基于4f-5d跃迁的较强的宽带蓝光发射,通过调节Ce3+/Sm3+离子的掺杂浓度,Ce3+/Sm3+离子共掺微晶玻璃发光的色度逐渐发生变化,当CeO2/Sm2O3掺杂的量比为1:1时,制得的微晶玻璃发光色坐标为(0.315, 0.296)。通过光谱和荧光衰减曲线,研究了Ce3+离子到Sm3+离子的能量传递,在SAZKNGC0.6S0.6微晶玻璃中,Ce3+离子向Sm3+离子传递能量效率约为20%。结果表明,Ce3+/Sm3+共掺微晶玻璃是白光LED的一种潜在基质材料。  相似文献   

16.
Transparent Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics containing BaF2 nanocrystals are prepared. Under excitation of a 980-nm laser diode (LD), compared with the glass before heat treatment, the Tm^3+/Er^3+/yb^3+ co-doped oxyfluorogermanate glass ceramics can emit intense blue, green and red up-conversion luminescence and Stark- split peaks; X-ray diffraction (XRD) and transmission electron microscope (TEM) results show that BaF2 nanocrystals with an average diameter of 20 nm are precipitated from the glass matrix. Stark splitting of the up-conversion luminescence peaks in the glass ceramics indicates that Tm^3+, Er^3+ and (or) Yb^3+ ions are incorporated into the BaF2 nanocrystals. The up-conversion luminescence intensities of Tm^3+, Er^3+ and the splitting degree of luminescence peaks in the glass ceramics increase significantly with the increase of heat treat temperature and heat treat time extension. In addition, the possible energy transfer process between rare earth ions and the up-conversion luminescence mechanism are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号