首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Eu3+/Dy3+共掺Sr3Y2(BO3)4荧光粉的发光性质研究
引用本文:胡欣妍,曹龙菲,李金华,李 霜.Eu3+/Dy3+共掺Sr3Y2(BO3)4荧光粉的发光性质研究[J].光谱学与光谱分析,2022,42(7):2063-2068.
作者姓名:胡欣妍  曹龙菲  李金华  李 霜
作者单位:1. 长春理工大学物理学院,吉林 长春 130022
2. 跨尺度微纳米制造教育部重点实验室,吉林 长春 130022
3. 纳米光子学与生物光子学吉林省重点实验室,吉林 长春 130022
基金项目:国家自然科学基金项目(62174015)资助
摘    要:稀土掺杂发光材料一直是科研领域研究的热点,被广泛应用于白光LED、温度传感、显示显像、新能源和激光等领域。基质的结构对于稀土离子光致发光特性有非常重要的影响,在众多发光基质材料中,硼酸盐具有透光范围宽、光学损伤阈值高、较好的热稳定性和化学稳定性等优点。碱土-稀土金属硼酸盐Sr3Y2(BO3)4具有出色的光学性能,对其发光性能的研究具有重要意义。稀土离子Eu3+具4f6电子层,是一种典型的下转换发光中心离子,常被选作红色发光材料的激活剂。Dy3+具4f9电子层,也是一种典型的下转换发光中心离子,在紫外光激发下,在蓝色光区和橙色光区有较强的荧光发射。采用高温固相法合成了Sr3Y2(BO3)4∶Eu3+/Dy3+荧光粉,通过XRD和SEM对样品的结构和形貌进行了表征,XRD结果表明,1 000 ℃烧结5 h,H3BO3过量20%为最佳制备条件,且少量的Eu3+和Dy3+掺杂并未改变Sr3Y2(BO3)4的晶格结构。SEM图像表明Sr3Y2(BO3)4基质的平均晶粒尺寸为2~4 μm,10%Eu3+单掺和5%Eu3+/5%Dy3+双掺样品与基质Sr3Y2(BO3)4的SEM图像相比,形貌和尺寸并没有发生明显的改变。Sr3Y2(BO3)4∶Eu3+荧光粉的发光结果表明,分别在395和466 nm激发下,浓度为5%,10%和15%的Eu3+单掺Sr3Y2(BO3)4荧光粉的主要发光位于593和613 nm的红光发射,峰强度随着Eu3+浓度的增加呈现先增加后降低的变化形式,掺杂浓度为10%时发光强度最大,说明存在浓度猝灭现象。色坐标结果显示,激发波长由395 nm变化到466 nm,Sr3Y2(BO3)4∶Eu3+荧光粉的发光颜色从橙红色向红色转变。引入Dy3+后,Sr3Y2(BO3)4∶Eu3+/Dy3+样品的发射光谱出现Dy3+的486 nm的蓝光发射(4F9/2→6H15/2)和576 nm的橙光发射(4F9/2→6H13/2),并且随着Dy3+浓度的增加,对Eu3+的5D0→7F1, 2, 3, 4跃迁有抑制作用。色坐标结果显示通过调整掺杂离子Eu3+和Dy3+的比例可实现Sr3Y2(BO3)4∶Eu3+/Dy3+荧光粉的颜色从红色区域向橙色区域转变,说明其在显示方面具有良好的应用前景。

关 键 词:Sr3Y2(BO3)4∶Eu3+/Dy3+  颜色可调  下转换发光  
收稿时间:2021-06-02

Eu3+/Dy3+ Co-Doped Sr3Y2(BO3)4 Phosphor Luminous Properties Research
HU Xin-yan,CAO Long-fei,LI Jin-hua,LI Shuang.Eu3+/Dy3+ Co-Doped Sr3Y2(BO3)4 Phosphor Luminous Properties Research[J].Spectroscopy and Spectral Analysis,2022,42(7):2063-2068.
Authors:HU Xin-yan  CAO Long-fei  LI Jin-hua  LI Shuang
Institution:1. School of Physics, Changchun University of Science and Technology, Changchun 130022, China 2. Key Laboratory of Cross-scale Micro-Nano Manufacturing, Ministry of Education, Changchun 130022, China 3. Jilin Provincial Key Laboratory of Nanophotonics and Biophotonics, Changchun 130022, China
Abstract:Rare earth-doped luminescent materials have always been a hot spot in the field of scientific research and are widely used in the fields of white light LEDs, temperature sensing, display imaging, new energy and lasers. The matrix structure has a significant influence on the photoluminescence properties of rare-earth ions. Among many luminescent matrix materials, borate has the advantages of a wide range of light transmission, high optical damage threshold, better thermal stability and chemical stability. Alkaline-earth and rare-earth metal borates Sr3Y2(BO3)4 have excellent optical properties, and the study of its luminescence properties is of great significance. The rare-earth ion Eu3+ ions have a 4f6 electron layer, which is a typical down-conversion luminescence center ion, and is often selected as an activator of red luminescent materials. Dy3+ ions have a 4f9 electron layer, a typical down-conversion luminescence center ion. Under the excitation of ultraviolet light, there is a strong fluorescence emission in the blue and orange light areas. This paper synthesised, Sr3Y2(BO3)4∶Eu3+/Dy3+ phosphors by high-temperature solid-phase method. XRD and SEM characterized the structure and morphology of the samples. XRD results showed that when sintered at 1 000 ℃ for 5 hours, 20% excess of H3BO3 is the best preparation conditions, and doping with a small amount of Eu3+ ions and Dy3+ ions did not change the lattice structure of Sr3Y2(BO3)4. The SEM image shows that the average grain size of the Sr3Y2(BO3)4 matrix is 2~4 μm, compared with the SEM image of the 10% Eu3+ single-doped sample and 5% Eu3+/5% Dy3+ double-doped sample, the morphology and size of the matrix Sr3Y2(BO3)4 did not change significantly. The luminescence results of Sr3Y2(BO3)4∶Eu3+ samples show that the main luminescence of Eu3+ mono-doped Sr3Y2(BO3)4 phosphors at concentrations of 5%, 10% and 15% under excitation at 395nm and 466 nm is located at 593 and 613 nm. For red light emission, the peak intensity increases first and then decreases with the increase of Eu3+ concentration. When the doping concentration is 10%, the luminescence intensity is the highest, indicating a concentration quenching phenomenon. The CIE chromaticity coordinates results show that the excitation wavelength changes from 395 to 466 nm, and the emission color of Sr3Y2(BO3)4∶Eu3+ phosphor changes from orange-red to red. After the introduction of Dy3+, the emission spectrum of Sr3Y2(BO3)4∶Eu3+/Dy3+ samples showed the 486 nm blue emission (4F9/2→6H15/2) and 576 nm orange emission (4F9/2→6H13/2) of Dy3+, And with the increase of Dy3+ ions concentration, it has an inhibitory effect on the 5D0→7F1, 2, 3, 4 transition of Eu3+. The CIE coordinates results show that by adjusting the ratio of doped ions Eu3+ and Dy3+, the color of Sr3Y2(BO3)4∶Eu3+/Dy3+ phosphor can be changed from the red area to the orange area, indicating that it has a good application prospect in the display.
Keywords:Sr3Y2(BO3)4∶Eu3+/Dy3+  Color adjustable  Downconversion luminescence  
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号