首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A new concept related to self-stable chaos control is first put forward, and its theoretical basis and realization are presented from the frequency-domain perspective. With a new analogous-circuit realization of this control its applications in the voltage-mode Buck converter is discussed. The harmonic-balance method is applied to determine the control range of the control parameter. The experiment results given in the last part confirm the validity of the proposed control method.  相似文献   

2.
Vimal Singh 《Physics letters. A》2008,372(19):3537-3538
It is pointed out that an unnatural assumption is made in the following Letter [Z. Mao, H. Zhao, Phys. Lett. A 364 (1) (2007) 38]. Therefore, the results of the Letter are not relevant to the real Cohen-Grossberg neural network model.  相似文献   

3.
A method for the control of chaos in the current-mode boost converter is presented by using the first-order dynamic feedback control. The feedback part consists of a resistance and a capacitance in series. The system to be controlled is treated as a third-order model, and then the discrete mapping model is obtained by using the data-sampling method. By analysing the position of the maximum norm eigenvalue, the stable range of feedback gain is ascertained out and its optimization is also carried out. Finally, the results of simulation and experiment confirm the correctness of the theoretical analysis and the validity of the proposed means.  相似文献   

4.
We investigate a kind of chaos generating technique on a type of n-dimensional linear differential systems by adding feedback control items under a discontinuous state. This method is checked with some examples of numeric simulation. A constructive theorem is proposed for generalized synchronization related to the above chaotic system.  相似文献   

5.
This work is concerned with the general methods for modified projective synchronization of hyperchaotic systems. A systematic method of active control is developed to synchronize two hyperchaotic systems with known parameters. Moreover, by combining the adaptive control and linear feedback methods, general sufficient conditions for the modified projective synchronization of identical or different chaotic systems with fully unknown or partially unknown parameters are presented. Meanwhile, the speed of parameters identification can be regulated by adjusting adaptive gain matrix. Numerical simulations verify the effectiveness of the proposed methods.  相似文献   

6.
Zhi Li  Ju-Jang Lee 《Physics letters. A》2008,372(10):1733-1735
In this Letter, we indicate that the proposed sufficient condition in Letter [J.Q. Lu, W.C. Ho, M. Liu, Phys. Lett. A 369 (2007) 444] does not hold when coupling matrix G satisfies Assumption 3 in Letter [J.Q. Lu, W.C. Ho, M. Liu, Phys. Lett. A 369 (2007) 444]. Besides, there are some mistakes in deducing Theorem 1. The mistakes have been corrected and a correct version is given in this Letter.  相似文献   

7.
A non-invasive method for controlling chaos in the voltage-mode Buck converter is proposed by using a hybrid active filter based feedback controller in this Letter. The harmonic balance method is applied to obtaining the bifurcation-point equations of the controlled system. Hence, a stability-boundary diagram is constructed, through which the control parameters are chosen correctly. The results of simulation and experiment are given after all.  相似文献   

8.
We explain the functional projective lag synchronization of a hyperchaotic Rössler system with four unknown parameters, where the output of the master system lags behind the output of the slave system proportionally. Based on Lyapunov stability theory, an active control method and adaptive control law are employed to make the states of two hyperchaotic Rössler systems asymptotically synchronized. Finally, some numerical examples are provided to show the effectiveness of our results.  相似文献   

9.
A novel adaptive observer-based control scheme is presented for synchronization and suppression of a class of uncertain chaotic system. First, an adaptive observer based on an orthogonal neural network is designed. Subsequently, the sliding mode controllers via the proposed adaptive observer are proposed for synchronization and suppression of the uncertain chaotic systems. Theoretical analysis and numerical simulation show the effectiveness of the proposed scheme.  相似文献   

10.
A sliding mode adaptive synchronization controller is presented with a neural network of radial basis function (RBF) for two chaotic systems. The uncertainty of the synchronization error system is approximated by the RBF neural network. The synchronization controller is given based on the output of the RBF neural network. The proposed controller can make the synchronization error convergent to zero in 5s and can overcome disruption of the uncertainty of the system and the exterior disturbance. Finally, an example is given to illustrate the effectiveness of the proposed synchronization control method.  相似文献   

11.
A.E. Matouk 《Physics letters. A》2009,373(25):2166-2173
The stability conditions in fractional order hyperchaotic systems are derived. These conditions are applied to a novel fractional order hyperchaotic system. The proposed system is also shown to exhibit hyperchaos for orders less than 4. Based on the Routh-Hurwitz conditions, the conditions for controlling hyperchaos via feedback control are also obtained. A specific condition for controlling only fractional order hyperchaotic systems is achieved. Numerical simulations are used to verify the theoretical analysis.  相似文献   

12.
We successfully demonstrated the first experimental stabilization of irregular and non-periodic cantilever oscillation in the amplitude modulation atomic force microscopy using the time-delayed feedback control. A perturbation to cantilever excitation force stabilized an unstable periodic orbit associated with nonlinear cantilever dynamics. Instead of the typical piezoelectric excitation, the magnetic excitation was used for directly applying control force to the cantilever. The control force also suppressed the cantilever's occasional bouncing motions that caused artifacts on a surface image.  相似文献   

13.
Five interesting experiments have been done for a class of chaos synchronization systems with unknown parameters and unknown control directions. And three important conclusions about parameters identification have been made. First, a necessary and sufficient condition for parameters identification is obtained. Second, a Nussbaum method is proposed to solve the problem of unknown control direction. Third, the adaptive method is not infinitely effective considered for our current ability of computation and simulation algorithm.  相似文献   

14.
Yanhong Zhao 《Physics letters. A》2008,372(48):7165-7171
This Letter investigates projective synchronization between the drive system and response complex dynamical system. An impulsive control scheme is adapted to synchronize the drive-response dynamical system to a desired scalar factor. By using the stability theory of the impulsive differential equation, the criteria for the projective synchronization are derived. The feasibility of the impulsive control of the projective synchronization is demonstrated in the drive-response dynamical system.  相似文献   

15.
The KV beam through an axisymmetric periodic-focusing magnetic field is studied using the particle-core model. A new variable of the self-field-intensity of particle beam is selected, and an idea of self-field feedback controller is proposed based on the variable for controlling the halo-chaos. We perform multiparticle simulation to control the halo by using the self-field feedback controller. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively, and that the density uniformity can be found at the centre of beam as long as an appropriate control method is chosen. The control method may be operated in the experiment, because field intensity measurement is easy.  相似文献   

16.
Comparison of feedback control methods for a hyperchaotic Lorenz system   总被引:1,自引:0,他引:1  
More and more attention has been payed to the hyperchaotic system for the huge potential applications of hyperchaotic system such as secure communication and more complex structure than chaotic system. So at present the controlling of the hyperchaotic system simply and effectively is a frontier topic of nonlinear science. In this Letter, for the latest hyperchaotic Lorenz system, four feedback control methods were studied with analytic solution and necessary numerical simulations. It is found that the enhancing feedback control approach is the best choice of the given four feedback control methods for its relatively simple external inputs and relatively small necessary feedback coefficient after comparison. The conclusion is a helpful for the choice of control methods of any other chaotic and hyperchaotic systems.  相似文献   

17.
A general response system control method for synchronization of continuous scalar chaotic signal is presented. The proposed canonical genera/response system can cover most of the well-known chaotic systems. Conversely, each of these chaotic systems can Mso be used to construct the genera/response system. Furthermore, a novel controller of the proposed response system is designed based on backstepping technique, with which the output of the genera/response system and the given continuous chaotic signal can synchronize perfectly. Two numerical examples are given to illustrate the effectiveness of the proposed control method.  相似文献   

18.
Wei Yang 《Physics letters. A》2010,374(4):557-3089
In this Letter, we investigate function projective synchronization of two-cell quantum-CNN chaotic oscillators using nonlinear adaptive controller. Based on Lyapunov stability theory, the nonlinear adaptive control law is derived to make the state of two chaotic systems function projective synchronized. Two numerical simulations are presented to illustrate the effectiveness of the proposed nonlinear adaptive control scheme, which is more effective than that in previous literature.  相似文献   

19.
We analyse stability of the generalized four-variable Rössler oscillating system depending on selected control parameters, by using analytic and Hurwitz-Routh methods. In contrast to the usual three-dimensional Rössler and Lorenz systems, we show that always there exists at least one unstable direction, and the number of positive local Lyapunov exponents may be different for both fixed points. We have found two new types of Hopf bifurcation, in which the dimension of the unstable manifold can be increased or reduced by two. Hence there are many possibilities for hyperchaotic unstable manifolds of various dimensions. We have also calculated various ranges of the control parameters for which different unstable manifolds can be obtained. This allows a better characterization of stability of the attractors in the hyperchaotic regime.  相似文献   

20.
Impulsive Control for Fractional-Order Chaotic Systems   总被引:1,自引:0,他引:1       下载免费PDF全文
We propose an impulsive control scheme for fractional-order chaotic systems. Based on the Takagi-Sugeno (T-S) fuzzy model and linear matrix inequalities (LMfs), some sufficient conditions are given to stabilize the fractional-order chaotic system via impulsive control. Numerical simulation shows the effectiveness of this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号