首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Letter studies the projective synchronization of a class of delayed chaotic systems. The drive-response system can be synchronized to within a desired scaling factor via impulsive control. Some sufficient conditions are derived by the stability analysis of the impulsive functional differential equations. An illustrative example is provided to show the effectiveness and feasibility of the proposed method and results.  相似文献   

2.
Manfeng Hu  Zhenyuan Xu 《Physica A》2008,387(14):3759-3768
In this paper, we study the projective cluster synchronization in a drive-response dynamical network with 1+N coupled partially linear chaotic systems. Because the scaling factors characterizing the dynamics of projective synchronization remain unpredictable, pinning control ideas are adopted to direct the different scaling factors onto the desired values. It is also shown that the projection cluster synchronization can be realized by controlling only one node in each cluster. Numerical simulations on the chaotic Lorenz system are illustrated to verify the theoretical results.  相似文献   

3.
Impulsive projective synchronization in 1 +N coupled chaotic systems are investigated with the drive-response dynamical network (DRDN) model. Based on impulsive stability theory, some simple but less conservative criteria axe achieved for projective synchronization in DRDNs. Furthermore, impulsive pinning scheme is also adopted to direct the scaring factor onto the desired value. Numerical simulations on generalized chaotic unified system axe illustrated to verify the theoretical results.  相似文献   

4.
Based on the comparison theorem for the stability of impulsive control system, adaptive-impulsive synchronization in drive-response networks of continuous systems with time-delay and non-time-delay is investigated. And the continuous control input, the simple updated laws and a linear impulsive controller are proposed. Moreover, two numerical examples are presented to verify the effectiveness and correctness of the theorem, using the energy resource system and Lü's system as the nodes of the networks.  相似文献   

5.
Scaling factor of projective synchronization in coupled partially linear chaotic systems is hardly predictable. To control projective synchronization of chaotic systems in a preferred way, an impulsive control scheme is introduced to direct the scaling factor onto a desired value. The control approach is derived from the impulsive differential equation theory. Numerical simulations on the chaotic Lorenz system are illustrated to verify the theoretical results. Furthermore, some interesting and surprising numerical results are discussed.  相似文献   

6.
Recently, projective synchronization (PS) has been widely studied in more than one system. In this Letter, we propose a linear controller and an updated law to realize the PS in drive-response dynamical networks of partially linear systems with time-varying coupling delay, based on the Lyapunov stability theory. A sufficient condition is obtained. Moreover, numerical simulations are provided to verify the correctness and effectiveness of the scheme.  相似文献   

7.
In this Letter, the function projective synchronization in the drive-response dynamical network is investigated, where the response dynamical network is affected not only by the drive system, but also coupled via a linearly feedback scheme. Based on Lyapunov stability theory, it is shown that the function projective synchronization with desired scaling function can be realized in the drive-response dynamical network by a simple control law. Moreover it is no need for the scaling function to be differentiable, bounded and nonzero all the time. The numerical simulations are provided to verify the theoretical result.  相似文献   

8.
Robust impulsive synchronization of complex delayed dynamical networks   总被引:1,自引:0,他引:1  
This Letter investigates robust impulsive synchronization of complex delayed dynamical networks with nonsymmetrical coupling from the view of dynamics and control. Based on impulsive control theory on delayed dynamical systems, some simple yet generic criteria for robust impulsive synchronization are established. It is shown that these criteria can provide a novel and effective control approach to synchronize an arbitrary given delayed dynamical network to a desired synchronization state. Comparing with existing results, the advantage of the control scheme is that synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

9.
K. Li  C.H. Lai 《Physics letters. A》2008,372(10):1601-1606
This Letter studies adaptive-impulsive synchronization of uncertain complex dynamical networks. Based on the stability analysis of impulsive system, several network synchronization criteria for local and global adaptive-impulsive synchronization are established. Numerical example is also given to illustrate the results.  相似文献   

10.
曾长燕  孙梅  田立新 《物理学报》2010,59(8):5288-5292
最近,对时变延迟网络的脉冲稳定性的研究大量出现,但通过自适应-脉冲控制方法获得的时变延迟网络同步准则却很少.本文中,运用自适应-脉冲控制方法,设计自适应反馈控制器、自适应律和线性脉冲控制器,研究时变耦合部分线性系统驱动-响应复杂网络的投影同步.获得时变耦合网络的自适应-脉冲投影同步准则.并且不需要网络的耦合构造矩阵是不可约的.另外,运用数值模拟证实方案的有效性和可行性.  相似文献   

11.
In this paper, outer synchronization between drive-response dynamical networks is investigated. Impulsive control combining with adaptive strategy is adopted to design controllers for achieving the goal. Based on the Lyapunov function method and mathematical analysis technique, a synchronization criterion with respect to the impulsive gains and intervals is analytically derived. From the criterion, the impulsive gains can adjust themselves to proper values when the impulsive intervals and some constants are fixed, and vice versa. Finally, two numerical examples are provided to verify the effectiveness of the derived result.  相似文献   

12.
This paper investigates the problem of projective lag synchronization behavior in drive-response dynamical networks (DRDNs) with identical and non-identical nodes. An adaptive control method is designed to achieve projective lag synchronization with fully unknown parameters and unknown bounded disturbances. These parameters were estimated by adaptive laws obtained by Lyapunov stability theory. Furthermore, sufficient conditions for synchronization are derived analytically using the Lyapunov stability theory and adaptive control. In addition, the unknown bounded disturbances are also overcome by the proposed control. Finally, analytical results show that the states of the dynamical network with non-delayed coupling can be asymptotically synchronized onto a desired scaling factor under the designed controller. Simulation results show the effectiveness of the proposed method.  相似文献   

13.
This Letter investigates modified function projective synchronization between hyperchaotic Lorenz system and hyperchaotic Lu system using adaptive method. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the state of two hyperchaotic systems modified function projective synchronized. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.  相似文献   

14.
This Letter investigates the synchronization problem of a complex network with nonidentical nodes, and proposes two effective control schemes to synchronize the network onto any smooth goal dynamics. By applying open-loop control to all nodes and placing adaptive feedback injections on a small fraction of network nodes, a low-dimensional sufficient condition is derived to guarantee the global synchronization of the complex network with nonidentical nodes. By introducing impulsive effects to the open-loop controlled network, another synchronization scheme is developed for the network composed of nonidentical nodes, and an upper bound of impulsive intervals is estimated to ensure the global stability of the synchronization process. Numerical simulations are given to verify the theoretical results.  相似文献   

15.
This work is concerned with the general methods for modified projective synchronization of hyperchaotic systems. A systematic method of active control is developed to synchronize two hyperchaotic systems with known parameters. Moreover, by combining the adaptive control and linear feedback methods, general sufficient conditions for the modified projective synchronization of identical or different chaotic systems with fully unknown or partially unknown parameters are presented. Meanwhile, the speed of parameters identification can be regulated by adjusting adaptive gain matrix. Numerical simulations verify the effectiveness of the proposed methods.  相似文献   

16.
We investigate a unified chaotic system and its synchronization including feedback synchronization and adaptive synchronization by numerical simulations. We propose a new dynamical quantity denoted by K, which connects adaptive synchronization and feedback synchronization, to analyze synchronization schemes. We find that K can estimate the smallest coupling strength for a unified chaotic system whether it is complete feedback or one-sided feedback. Based on the previous work, we also give a new dynamical method to compute the leading Lyapunov exponent.  相似文献   

17.
For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous work, where projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve projective synchronization in infinitedimensional chaotic systems. We give a general method with which we can achieve projective synchronization in time-delayed chaotic systems. The method is illustrated using the famous delay-differential equations related to optical bistability. Numerical simulations fully support the analytical approach.  相似文献   

18.
We investigate the problem of function projective synchronization (FPS) in drive-response dynamical networks with non-identical nodes. An adaptive controller is proposed for the FPS of complex dynamical networks with uncertain parameters and disturbance. Not only are the unknown parameters of the networks estimated by the adaptive laws obtained from the Lyapunov stability theory and Taylor expansions, but the unknown bounded disturbances are also simultaneously conquered by the proposed control. Finally, a numerical simulation is provided to illustrate the feasibility and effectiveness of the obtained result.  相似文献   

19.
Wei Yang 《Physics letters. A》2010,374(4):557-3089
In this Letter, we investigate function projective synchronization of two-cell quantum-CNN chaotic oscillators using nonlinear adaptive controller. Based on Lyapunov stability theory, the nonlinear adaptive control law is derived to make the state of two chaotic systems function projective synchronized. Two numerical simulations are presented to illustrate the effectiveness of the proposed nonlinear adaptive control scheme, which is more effective than that in previous literature.  相似文献   

20.
This Letter investigates the function projective synchronization of different chaotic systems with unknown parameters. By Lyapunov stability theory, the adaptive control law and the parameter update law are derived to make the states of two different chaotic systems asymptotically synchronized up to a desired scaling function. Numerical simulations on Lorenz system and Newton-Leipnik system are presented to verify the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号