首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A large amount of Ni2Si nanowires sheathed with amorphous silicon oxide has been generated from Ni substrates, for the first time, by thermal chemical vapor deposition using SiH4 gas at 500 °C. The Ni2Si nanowires obtained possess substantial amounts of branches (about 2-m length) grown on the main stems (about -–30 80nm diameter and -–10 20m length). High-resolution transmission electron microscopy and electron diffraction have revealed the orthorhombic Ni2Si phase and the orientation. At the tail end along the branch grown on a stem an amorphous phase was also observed. The Raman spectrum was further used to characterize the product. A possible growth process of the branched Ni2Si nanowires is briefly discussed. PACS 81.05.Bx; 81.07.Bc; 81.15.Gh; 87.64.Ee; 87.64.Je  相似文献   

2.
Amorphous silicon oxide (SiOx) nanowires were directly grown by thermal processing of Si substrates. Au and Pd–Au thin films with thicknesses of 3 nm deposited on Si (0 0 1) substrates were used as catalysts for the growth of nanowires. High-yield synthesis of SiOx nanowires was achieved by a simple heating process (1000–1150 °C) in an Ar ambient atmosphere without introducing any additional Si source materials. The as-synthesized products were characterized by field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and transmission electron microscopy measurements. The SiOx nanowires with lengths of a few and tens of micrometers had an amorphous crystal structure. The solid–liquid–solid model of nanowire formation was shown to be valid.  相似文献   

3.
We have demonstrated the growth of SiOx nanowires by the simple heating of the Cu-coated Si substrates. We have applied X-ray diffraction, scanning electron microscopy and transmission electron microscopy techniques to characterize the structure of the samples. The as-synthesized SiOx nanowires had amorphous structures with diameters in the range of 20–80 nm. The thickness of the Cu layer affected the resultant sample morphology, favoring the nanowire formation at smaller thickness. Photoluminescence spectra of the nanowires exhibited blue emission. We have proposed the possible growth mechanism.  相似文献   

4.
Phosphorous-doped and boron-doped amorphous Si thin films as well as amorphous SiO2/Si/ SiO2 sandwiched structures were prepared in a plasma enhanced chemical vapor deposition system. Then, the p–i–n structures containing nano-crystalline Si/ SiO2 sandwiched structures as the intrinsic layer were prepared in situ followed by thermal annealing. Electroluminescence spectra were measured at room temperature under forward bias, and it is found that the electroluminescence intensity is strongly influenced by the types of substrate. The turn-on voltages can be reduced to 3 V for samples prepared on heavily doped p-type Si (p+-Si) substrates and the corresponding electroluminescence intensity is more than two orders of magnitude stronger than that on lightly doped p-type Si (p-Si) and ITO glass substrates. The improvements of light emission can be ascribed to enhanced hole injection and the consequent recombination of electron–hole pairs in the luminescent nanocrystalline Si/ SiO2 system.  相似文献   

5.
One-dimensional Ag/Si/SiOx capsule nanostructures have been synthesized by thermal evaporation of the mixture of SiO and Ag2O. Products were analyzed by using SEM, TEM, HREM and element map. Two kinds of morphologies were observed. Inside the amorphous SiOx shell, Ag nanowires interspersed by short segments of Si were formed when Ag content was higher than Si. Ag and Si contacted well and nanosize MS (metal-semiconductor) structures were obtained. One-dimensional periodic nanostructures that Ag particles embedded in the nanowire were synthesized when Si content was higher than Ag. SiOx nanotubes were also observed. Structure analysis shows that Ag/Si/SiOx nanostructures are grown by a self-assembled SiOx template mechanism. And the growth of SiOx nanotubes is tightly related to the adding of Ag. PACS 81.07.Bc; 81.10.Bk; 61.14.-x  相似文献   

6.
This paper presents the use of the simple annealing technique at 1000 °C to produce the helical nanostructures of SiOx. We have employed the Co-coated Si substrates, with Co layer and Si substrate utilized as catalyst and Si source, respectively. Beside the ordinary straight nanowires, the helical nanowires such as nanosprings and nanorings were observed. The product was an amorphous structure of SiOx. We have discussed the possible growth mechanism. Photoluminescence spectrum of the SiOx nanostructures showed a blue emission at 428 nm and a green emission at 534 nm, respectively.  相似文献   

7.
何萌  刘国珍  仇杰  邢杰  吕惠宾 《物理学报》2008,57(2):1236-1240
采用激光分子束外延技术,利用两步法,在Si单晶衬底上成功地外延生长出TiN薄膜材料.原子力显微镜分析结果显示, TiN薄膜材料表面光滑,在10 μm×10 μm范围内,均方根粗糙度为0842nm.霍耳效应测量结果显示,TiN薄膜在室温条件下的电阻率为36×10-5Ω·cm,迁移率达到5830 cm2/V·S,表明TiN薄膜材料是一种优良的电极材料.X射线θ—2θ扫描结果和很高的迁移率均表明,高质量的TiN薄膜材料被外延在Si衬底 关键词: 激光分子束外延 TiN单晶薄膜 外延生长  相似文献   

8.
Aligned straight silica nanowires (NWs) have been synthesized on Si wafer by thermal evaporation of mixed powders of zinc carbonate hydroxide and graphite at 1100 °C and condensation on Si substrate without using any catalyst. The straight silica NWs have diameters ranging from 50 to 100 nm, and lengths of several micrometers, with cone-shaped tips at their ends. High deposition temperature and relatively high SiOx vapor concentration near the growth substrate would be beneficial to the formation of the aligned straight silica NWs. Different morphologies of silica nanostructures have also been obtained by varying the deposition temperature and the vapor concentration of the SiOx molecules. Room temperature photoluminescence measurements on the oriented silica NWs show that two green emission bands at 510 and 560 nm, respectively, revealing that the aligned straight silica NWs might have potential applications in the future optoelectronic devices.  相似文献   

9.
We report the growth of high-areal-density GaN nanowires on large-size graphene films using a nickel (Ni) catalyst-assisted vapor-liquid-solid (VLS) method. Before the nanowire growth, the graphene films were prepared on copper foils using hot-wall chemical vapor deposition and transferred onto SiO2/Si substrates. Then, for catalyst-assisted VLS growth, Ni catalyst layers with thickness of a few nanometers were deposited on the graphene-coated substrates using a thermal evaporator. We investigated the effect of the Ni catalyst thickness on the formation of GaN nanowires. Furthermore, the structural and optical characteristics of GaN nanowires were investigated using X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The GaN nanowires grown on graphene films were transferred onto polymer substrates using a simple lift-off method for applications as flexible photocatalysts. Photocatalysis activities of the GaN nanowires prepared on the flexible polymer substrates were investigated under bending conditions.  相似文献   

10.
Three different shapes of SiC/SiO2 core–shell nanowires were synthesized on Si substrates through a reaction between methane and silica using iron as catalyst. Analysis of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results indicated that catalyst morphology was the key factor for the formation of these three different products. The field emission properties of these three nanowires were investigated. Comparing the field emission results of these three nanowires, we can obtain a conclusion that a vertically well-aligned orientation to the substrate played a very significant role in improving the field emission properties when the emitters are up to a considerable number.  相似文献   

11.
High-quality ZnO thin films were grown on single-crystalline Al2O3(0001) and amorphous SiO2/Si(100) substrates at 400–640 °C using laser molecular beam epitaxy. For film growth, the third harmonics of a pulsed Nd:YAG laser were illuminated on a ZnO target. The ZnO films were epitaxially grown on Al2O3(0001) with the narrow X-ray diffraction full width at half maximum (FWHM) of 0.04° and the films on SiO2/Si(100) exhibited a preferred c-axis orientation. Furthermore, the films exhibited excellent optical properties in photoluminescence (PL) measurements with very sharp excitonic and weak deep-level emission peaks. At 15 K, PL FWHM values of the films grown on Al2O3(0001) and SiO2/Si(100) were 3 and 18 meV, respectively. Received: 8 May 2001 / Accepted: 18 September 2001 / Published online: 20 December 2001  相似文献   

12.
We report on continuous-wave laser induced crystallisation processes occurring in Si/SiO2 multiple quantum wells (MQW), prepared by remote plasma enhanced chemical vapour deposition of amorphous Si and SiO2 layers on quartz substrates. The size and the volume fraction of the Si nanocrystals in the layers were estimated employing micro-Raman spectroscopy. It was found that several processes occur in the Si/SiO2 MQW system upon laser treatment, i.e. amorphous to nanocrystalline conversion, Si oxidation and dissolution of the nanocrystals. The speed of these processes depends on laser power density and the wavelength, as well as on the thickness of Si-rich layers. At optimal laser annealing conditions, it was possible to achieve ∼100% crystallinity for 3, 5 and 10 nm thickness of deposited amorphous Si layers. Crystallization induced variation of the light absorption in the layers can explain the complicated process of Si nanocrystals formation during the laser treatment.  相似文献   

13.
In this work, the magnetic and transport properties of Fe/SiO2/Ni and Fe/SiO2/Co multilayers grown on Si/SiO2 substrates have been studied. The samples have been prepared by two-stage deposition process. In the first stage, Fe layer and SiO2 interlayer of both samples are grown by ion beam deposition technique at room temperature. Then the samples are taken out to ambient atmosphere and loaded into a pulse laser deposition (PLD) chamber. Prior to the deposition of top layer, the samples are cleaned by annealing at 150 °C. In the second stage, Ni (or Co) layer is prepared by PLD technique at room temperature. The thickness of deposited layers has been measured by Rutherford back scattering (RBS). Magnetic properties of ferromagnetic bilayers have been investigated by room-temperature ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. Standard four-point magneto-transport measurements at various temperatures have been performed. Two-step switching in the in-plane hysteresis loops of Fe/SiO2/Ni and Fe/SiO2/Co samples is observed. A crossing in the middle of hysteresis loops of both samples points to a weak antiferromagnetic interaction between the magnetic layers of the stacks. Saturation magnetization values have been obtained from the VSM measurements of samples with DC magnetic field perpendicular to the films surface. Magneto-transport measurements have shown the predominant contribution of anisotropic magnetic resistance both at room and low temperatures. FMR studies of Fe/SiO2/Ni and Fe/SiO2/Co samples have revealed additional non-uniform (surface and bulk SWR) modes, which behavior has been explained in the framework of the surface inhomogeneity model. An origin of the antiferromagnetic interaction has been discussed.  相似文献   

14.
Most studies on Co-doped TiO2 system were focused on thin films grown by MBE-based methods. In this work we report the ferromagnetism of nanometer-thick-layered TiO2/Co/TiO2/TiN film grown on Si substrate by conventional magnetron sputtering. For the growth of TiO2 on silicon, a non-oxide thermally stable material, TiN, was introduced to prevent Ti penetration into the Si substrate. Structural, magnetic, and transport measurements respectively by Raman, SQUID and Hall effect show that our samples are n-type semiconductors and exchange bias effect due to exchange coupling between Co and interfacial CoO. For the rapid vacuum annealed specimen, we found an enhanced loss and a Perminvar-type constricted hysteresis loop, which attributed to pinning of domain walls due to an induced anisotropy by the pair ordering in the metallic alloy of Co-Ti-Si.  相似文献   

15.
This paper relates a complete study of Si/SiO2 multilayer (ML) structures. First, we suggest an original way of synthesis based on reactive magnetron sputtering of a pure silica target. The photoluminescence spectra of these MLs consist of two Gaussian bands in the visible-near infrared spectral region. The stronger one (I band) is fixed at about 780 nm and probably due to interface states. The weaker one (Q band) is tuneable with the Si sublayer thickness and originates from a radiative recombination within the nanosized Si layers. For this latter band the peak position is a function of the Si sublayer thickness and shows a discontinuity at 30 Å. This corresponds to an Si phase change. For thicknesses above 30 Å, the sublayers are composed of nanocrystalline silicon whereas below 30 Å the sublayers are made of amorphous silicon. We develop a model based on a quantum well to which we have added an interfacial region between Si and SiO2. It is characterised by an interfacial potential of 0.3 eV. This model depicts the simultaneous behaviour of Q and I bands for an Si sublayer thickness below 30 Å.  相似文献   

16.
The paper reports a study of the depth profile of the generation efficiency and escape of the ultrasoft silicon L 2,3 x-ray radiation excited by electrons of various energies. The generation function describing the excitation efficiency is the kernel of an integral equation determining the dependence of x-ray emission intensity on primary-electron energy. To determine the form of this function, a study was made of the dependence of the Si L 2,3 x-ray spectral intensity and of its silicon L 2,3 component bands, from crystalline silicon and amorphous dioxide SiO2, on primary-electron energy in samples made from dioxide layers of various thicknesses grown on crystalline silicon. These experiments permitted investigation of the generation-function cross sections at the depth of the Si-SiO2 interface. The theoretical simulation of the generation function made use of the simplest laws governing electron interaction with solids and of the cross section of the inner-level ionization by electron impact in its most general form. A comparison of the experimentally obtained relative contributions of the Si and SiO2 emissions with the calculations shows them to be in good agreement up to primary-electron energies of 2–3 keV. Fiz. Tverd. Tela (St. Petersburg) 40, 1932–1936 (October 1998)  相似文献   

17.
Preparation and characterization of CdS/Si coaxial nanowires   总被引:1,自引:0,他引:1  
CdS/Si coaxial nanowires were fabricated via a simple one-step thermal evaporation of CdS powder in mass scale. Their crystallinities, general morphologies and detailed microstructures were characterized by using X-ray diffraction, scanning electron microscope, transmission electron microscope and Raman spectra. The CdS core crystallizes in a hexagonal wurtzite structure with lattice constants of a=0.4140 nm and c=0.6719 nm, and the Si shell is amorphous. Five Raman peaks from the CdS core were observed. They are 1LO at 305 cm−1, 2LO at 601 cm−1, A1-TO at 212 cm−1, E1-TO at 234 cm−1, and E2 at 252 cm−1. Photoluminescence measurements show that the nanowires have two emission bands around 510 and 590 nm, which originate from the intrinsic transitions of CdS cores and the amorphous Si shells, respectively.  相似文献   

18.
Silicon nanowires (SiNWs) were prepared by the electrochemical reduction of solid Ni/SiO2 blocks in molten CaCl2 at 1173 K. The SiNWs have diameter distributions ranging from 80 to 350 nm, and the nickel–silicon droplets are found on the tips of the nanowires. The growth mechanism of SiNWs was investigated, which confirmed that the nano-sized nickel–silicon droplets formed at the Ni/SiO2/CaCl2 three-phase interline. The droplets lead to the oriented growth of SiNWs. Formation of nano-sized nickel–silicon droplets suggests that this method could be a potential way to produce nano-sized metal silicides.  相似文献   

19.
Isolation of four distinct nanostructured Ni products is demonstrated in a well-controlled chemical vapor deposition process. These nanostructures include core–shell Ni–NiO nanowires, horizontally oriented nanowires, vertically oriented nanowires, and fully isometric cubic crystals all obtained upon an amorphous SiO2|Si growth substrate from an identical metal halide precursor. Transmission electron microscopy indicates the horizontally- and vertically-oriented nanowire products to be high-quality single crystals with a preferred growth axis along the ?001? direction while the Ni–NiO core–shell nanowires are polycrystalline metal at the center and surrounded by an outer oxide. The differing crystal structures are reflected in the magnetic response of each nanowire type, as evidenced by magnetoresistance measurements. Detailed discussion of the formation mechanisms leading to each of the four nanostructured Ni products is presented along with a discussion of the general applicability of this non-epitaxial growth process to other material systems.  相似文献   

20.
Gold in contact with silicon substrates Si(1 0 0), Si(1 1 1), and SiO2 is studied by thermal evaporation and annealing in N2 using the modified sphere-plate technique. The final orientation distribution of crystalline Au films grown on Si substrate systems that incorporate a native amorphous oxide layer of silica and Au on amorphous silica (SiO2 glass) substrates is influenced by preferred orientations and twinning. Experimental evidence suggests that the orientation of Au{1 1 1} close packed planes (multiply twinned) was found to be of low-energy as the annealing temperature was increased to 530 °C and 920 °C. Additional orientations were observed for Au{1 0 0} on Si(1 0 0) substrates and Au{1 0 0}, {1 1 0}, and {3 1 1} on SiO2 substrates. After annealing at 920 °C the size distribution of the gold particles was determined to be within the range of 20-800 nm while the morphology of gold surface appears spherical to faceted in character. These results show similarities to recent findings for smaller nano-size 1D particles, islands and thin Au films on silicon annealed over lower temperature ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号