首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structural and optical properties of Si/SiO2 multi-quantum wells (MQW) were investigated by means of Raman scattering and photoluminescence (PL) spectroscopy. The MQW structures were fabricated on a quartz substrate by remote plasma enhanced chemical vapour deposition (RPECVD) of alternating amorphous Si and SiO2 layers. After layer deposition the samples were subjected to heat treatments, i.e. rapid thermal annealing (RTA) and furnace annealing. Distinct PL signatures of confined carriers evidenced formation of Si-nanocrystals (nc-Si) in annealed samples. Analyses of Raman spectra also show presence of nc-Si phase along with amorphous-Si (a-Si) phase in the samples. The strong influence of the annealing parameters on the formation of nc-Si phase suggests broad possibilities in engineering MQW with various optical properties. Interestingly, conversion of the a-Si phase to the nc-Si phase saturates after certain time of furnace annealing. On the other hand, thinner Si layers showed a disproportionately lower crystalline volume fraction. From the obtained results we could assume that an interface strain prevents full crystallization of the Si layers and that the strain is larger for thinner Si layers. The anomalous dependence of nc-Si Raman scattering peak position on deposited layer thickness observed in our experiments also supports the above assumption.  相似文献   

2.
We have studied luminescence properties and microstructure of 20 patterns Si/SiO2 multilayers. The photoluminescence spectra consist of two gaussian bands in the visible-infrared spectral region. It has been demonstrated that the strong PL band is caused by the radiative recombination in the Si/SiO2 interfaces states, whereas the weaker band originates from radiative recombination in the nanosized Si layers. The peak shift of this latter band shows a discontinuity that corresponds to a crystalline-to-amorphous phase change when the Si layers are thinner than 30 Å. The peak energy as a function of the layer thickness is interpreted using a quantum confinement model in the case of amorphous Si layers.  相似文献   

3.
We present a study on amorphous SiO/SiO2 superlattice performed by grazing-incidence small-angle X-ray scattering (GISAXS). Amorphous SiO/SiO2 superlattices were prepared by high-vacuum evaporation of 3 nm thin films of SiO and SiO2 (10 layers each) onto Si(1 0 0) substrate. After the deposition, samples were annealed at 1100 °C for 1 h in vacuum, yielding to Si nanocrystals formation. Using a Guinier approximation, the shape and the size of the crystals were obtained. The size of the growing nanoparticles in the direction perpendicular to the film surface is well controlled by the bilayer thickness. However, their size varies more significantly in the direction parallel to the film surface.  相似文献   

4.
This paper relates a complete study of Si/SiO2 multilayer (ML) structures. First, we suggest an original way of synthesis based on reactive magnetron sputtering of a pure silica target. The photoluminescence spectra of these MLs consist of two Gaussian bands in the visible-near infrared spectral region. The stronger one (I band) is fixed at about 780 nm and probably due to interface states. The weaker one (Q band) is tuneable with the Si sublayer thickness and originates from a radiative recombination within the nanosized Si layers. For this latter band the peak position is a function of the Si sublayer thickness and shows a discontinuity at 30 Å. This corresponds to an Si phase change. For thicknesses above 30 Å, the sublayers are composed of nanocrystalline silicon whereas below 30 Å the sublayers are made of amorphous silicon. We develop a model based on a quantum well to which we have added an interfacial region between Si and SiO2. It is characterised by an interfacial potential of 0.3 eV. This model depicts the simultaneous behaviour of Q and I bands for an Si sublayer thickness below 30 Å.  相似文献   

5.
The reduction of complementary metal oxide semiconductor dimensions through transistor scaling is in part limited by the SiO2 dielectric layer thickness. Among the materials evaluated as alternative gate dielectrics one of the leading candidate is La2O3 due to its high permittivity and thermodynamic stability. However, during device processing, thermal annealing can promote deleterious interactions between the silicon substrate and the high-k dielectric degrading the desired oxide insulating properties.The possibility to grow poly-SiGe on top of La2O3//Si by laser assisted techniques therefore seems to be very attractive. Low thermal budget techniques such as pulsed laser deposition and crystallization can be a good choice to reduce possible interface modifications due to their localized and limited thermal effect.In this work the laser annealing by ArF excimer laser irradiation of amorphous SiGe grown on La2O3//Si has been analysed theoretically by a numerical model based on the heat conduction differential equation with the aim to control possible modifications at the La2O3//Si interface. Simulations have been carried out using different laser energy densities (0.26-0.58 J/cm2), different La2O3 film thickness (5-20 nm) and a 50 nm, 30 nm thick amorphous SiGe layer. The temperature distributions have been studied in both the two films and substrate, the melting depth and interfaces temperature have been evaluated. The fluences ranges for which the interfaces start to melt have been calculated for the different configurations.Thermal profiles and interfaces melting point have shown to be sensitive to the thickness of the La2O3 film, the thicker the film the lower the temperature at Si interface.Good agreement between theoretical and preliminary experimental data has been found.According to our results the oxide degradation is not expected during the laser crystallization of amorphous Si0.7Ge0.3 for the examined ranges of film thickness and fluences.  相似文献   

6.
Si nanocrystals were formed in the non-stoichiometric Si-enriched SiNx low-pressure chemical vapor deposited (LPCVD) coatings on Si wafers treated by various modes. The coating structure as a function of technological conditions was investigated by ellipsometry and X-ray photoelectron spectroscopy (XPS) depth profiling. It was found that nanocomposites on base of SiNx films enriched by Si have a complex multilayered structure varying in dependence of deposition and annealing parameters. Analysis of the XPS spectra and Si 2s peaks shows the existence and quantity of four chemical structures corresponding to the Si–O, Si–N states, nanocrystalline and amorphous Si. The XPS results show evolution of the chemical structure of silicon nitride and formation of Si nanocrystals. It was found:
• The LPCVD technology of nanocrystals formation allows to get enough high concentration of Si nanocrystals on different depths from the sample surface.
• The volume fraction of nanocrystalline and amorphous Si is changed with depth; this relation depends from SiNx composition and annealing parameters.
• XPS detects these two phase compositions of Si nanoparticles in SiNx and SiO2 layers. The ellipsometry, HR-TEM, and XPS results are in good agreement.
Keywords: Nano crystals; Si  相似文献   

7.
In this report we present grazing incidence X-ray reflectivity (GIXR) study of SiO2/Si(0 0 1) system. We have analysed the X-ray reflectivity data using recursive formalism based on matrix method and distorted wave Born approximation (DWBA). From the analysis of the reflectivity data we could obtain the electron density profile (EDP) at the interface of the dielectric SiO2 film and the Si(0 0 1) substrate. The EDP obtained from the matrix method follows the DWBA scheme only when two transition layers are considered at the interface of SiO2/Si. The layer which is in proximity with the Si substrate has a higher electron density value than the Si and SiO2 values and it appears as a maximum in the EDP. The layer which is in proximity with the dielectric SiO2 layer has an electron density value lower than the SiO2 value and it appears as a minimum in the EDP. When the thickness of the SiO2 layer is increased the lower density layer diminishes and the higher density layer persists.  相似文献   

8.
Si/SiO2 superlattices were prepared by magnetron sputtering, and the deposition temperature and annealing temperature had a great influence on the superlattice structure. In terms of SEM images, the mean size of Si nanocrystals annealed at 1100 °C is larger than that of nanocrystals annealed at 850 °C. It was found that the films deposited at room temperature are amorphous. With increasing deposition temperature, the amorphous and crystalline phases coexist. With increasing annealing temperature, the Raman intensity of the peak near 470 cm−1 decreases, and the intensity of that at 520 cm−1 increases. Also, on increasing the annealing temperature, the Raman peak near 520 cm−1 shifts and narrows, and asymmetry emerges. A spherical cluster is used to model the nanocrystals in Si/SiO2 superlattices, and the observed Raman spectra are analyzed by combining the effects of confinement on the phonon frequencies. Raman spectra from a variety of nanocrystalline silicon structures were successfully explained in terms of the phonon confinement effect. The fitted results agreed well with the experimental observations from SEM images.  相似文献   

9.
Thermal stability, interfacial structures and electrical properties of amorphous (La2O3)0.5(SiO2)0.5 (LSO) films deposited by using pulsed laser deposition (PLD) on Si (1 0 0) and NH3 nitrided Si (1 0 0) substrates were comparatively investigated. The LSO films keep the amorphous state up to a high annealing temperature of 900 °C. HRTEM observations and XPS analyses showed that the surface nitridation of silicon wafer using NH3 can result in the formation of the passivation layer, which effectively suppresses the excessive growth of the interfacial layer between LSO film and silicon wafer after high-temperature annealing process. The Pt/LSO/nitrided Si capacitors annealed at high temperature exhibit smaller CET and EOT, a less flatband voltage shift, a negligible hysteresis loop, a smaller equivalent dielectric charge density, and a much lower gate leakage current density as compared with that of the Pt/LSO/Si capacitors without Si surface nitridation.  相似文献   

10.
Thick (i.e., ∼10 nm) SiO2/Si structure has been formed at 121 °C by immersion of Si in relatively low concentration HNO3 followed by that in 68 wt.% HNO3 (i.e., two-step nitric acid (HNO3) oxidation method of Si, NAOS) and spectroscopic properties and electrical characteristics of the NAOS SiO2 layers are investigated. The SiO2 thickness strongly depends on the concentration of HNO3 aqueous solutions employed in the initial oxidation, and it becomes the largest at the HNO3 concentration of 40 wt.%. The MOS diodes with the ∼9 nm SiO2 layer formed by the NAOS method possess a relatively low leakage current density (e.g., 10−8 A/cm2 at the forward bias of 1 V) and it is further decreased by more than one order of magnitude by post-metallization annealing (PMA) in hydrogen at 250 °C. The good leakage characteristic is attributable to atomically flat SiO2/Si interfaces and high atomic density of 2.30-2.32 × 1022 atoms/cm3 of the NAOS SiO2 layers. High-density interface states are present in as-prepared SiO2 layers and they are eliminated by PMA in hydrogen.  相似文献   

11.
We systematically investigated the photoluminescence (PL) and transmittance characteristics of ZnO-SiO2 opals with varied positions of the stop-band and film thicknesses. An improved ultraviolet (UV) luminescence was observed from ZnO-SiO2 composites over pure ZnO nanocrystals under 325 nm He-Cd laser excitation at room temperature. The UV PL of ZnO nanocrystals in SiO2 opals with stop-bands center of 410 nm is sensitive to the thickness of opal films, and the UV PL intensity increases with the film thickness increasing. The PL spectra of ZnO nanocrystals in SiO2 opals with stop-bands center of 570 nm show a suppression of the weak visible band. The experimental results are discussed based on the scattering and/or absorbance in opal crystals.  相似文献   

12.
马书懿  萧勇  陈辉 《中国物理》2002,11(9):960-962
The structure of Au/Si/SiO2/p-Si has been fabricated using the magnetron sputtering technique. It has a very good rectifying behaviour. Visible electroluminescence (EL) has been observed from the Au/Si/SiO2/p-Si structure at a forward bias of 5V or larger. A broad band with one peak around 650-660 nm appears in all the EL spectra of the structure. The effects of the thickness of the Si layer in the Si/SiO2 films and of the input electrical power on EL spectra are studied systematically.  相似文献   

13.
Structures containing silicon nanocrystals (nc-Si) are very promising for Si-based light-emitting devices. Using a technology compatible with that of silicon, a broader wavelength range of the emitted photoluminescence (PL) was obtained with nc-Si/SiO2 multilayer structures. The main characteristic of these structures is that both layers are light emitters. In this study we report results on a series of nc-Si/SiO2 multilayer periods deposited on 200 nm thermal oxide SiO2/Si substrate. Each period contains around 10 nm silicon thin films obtained by low-pressure chemical vapour deposition at T=625°C and 100 nmSiO2 obtained by atmospheric pressure chemical vapour deposition T=400°C. Optical and microstructural properties of the multilayer structures have been studied by spectroscopic ellipsometry (using the Bruggemann effective medium approximation model for multilayer and multicomponent films), FTIR and UV–visible reflectance spectroscopy. IR spectroscopy revealed the presence of SiOx structural entities in each nc-Si/SiO2 interface. Investigation of the PL spectra (using continuous wave-CW 325 nm and pulsed 266 nm laser excitation) has shown several peaks at 1.7, 2, 2.3, 2.7, 3.2 and 3.7 eV, associated with the PL centres in SiO2, nc-Si and Si–SiO2 interface. Their contribution to the PL spectra depends on the number of layers in the stack.  相似文献   

14.
The thermal effects produced by continuous-wave laser radiation on free-standing Si/SiO2 superlattices are studied. We compare two samples with different SiO2 layer thicknesses (2 and 6 nm) and the same Si layer thickness (2 nm). The as-prepared free-standing superlattices contain some amount of Si nanocrystals (Si-nc). Intense laser irradiation at 488 nm of the as-prepared samples enhances the Raman scattering of Si-nc by two orders of magnitude. This laser-induced crystallization originates from melting of Si nanostructures in silica, which makes Si-nc better ordered and better isolated from the oxide surrounding. Continuous-wave laser control of Si-nc stress was achieved in these samples. In the proposed model, intense laser radiation melts Si-nc, and Si crystallization upon cooling down from the liquid phase in a silica matrix leads to compressive stress. The Si-nc stress can be tuned in the ∼3 GPa range using laser annealing below the Si melting temperature. The high laser-induced temperatures were verified with Raman spectroscopy. The laser-induced heat leads to a strongly nonlinear rise of light emission. The light emission is also observed in the anti-Stokes region, and its temperature dependence is practically the same for the two studied samples. The laser-induced temperature is essentially controlled by the absorbed laser power. PACS 78.55.-m; 78.20.-e; 68.55.-a; 78.30.-j  相似文献   

15.
SiO2的赝晶化及AlN/SiO2纳米多层膜的超硬效应   总被引:1,自引:0,他引:1       下载免费PDF全文
赵文济  孔明  黄碧龙  李戈扬 《物理学报》2007,56(3):1574-1580
采用反应磁控溅射法制备了一系列不同SiO2层厚度的AlN/SiO2纳米多层膜,利用X射线衍射仪、高分辨透射电子显微镜和微力学探针表征了多层膜的微结构和力学性能,研究了SiO2层在多层膜中的晶化现象及其对多层膜生长方式及力学性能的影响. 结果表明,由于受AlN六方晶体结构的模板作用,溅射条件下以非晶态存在的SiO2层在其厚度小于0.6 nm时被强制晶化为与AlN相同的六方结构赝晶体并与AlN形成共格外延生长. 由于不同模量的两调制层存在晶格错配度,多层膜中产生了拉、压交变的应力场,使得多层膜产生硬度升高的超硬效应. SiO2随层厚的进一步增加又转变为以非晶态生长,多层膜的外延生长结构受到破坏,其硬度也随之降低. 关键词: 2纳米多层膜')" href="#">AlN/SiO2纳米多层膜 赝晶化 应力场 超硬效应  相似文献   

16.
Silicon dioxide (SiO2) layers with a thickness more than 10 nm can be formed at ∼120 °C by direct Si oxidation with nitric acid (HNO3). Si is initially immersed in 40 wt.% HNO3 at the boiling temperature of 108 °C, which forms a ∼1 nm SiO2 layer, and the immersion is continued after reaching the azeotropic point (i.e., 68 wt.% HNO3 at 121 °C), resulting in an increase in the SiO2 thickness. The nitric acid oxidation rates are the same for (1 1 1) and (1 0 0) orientations, and n-type and p-type Si wafers. The oxidation rate is constant at least up to 15 nm SiO2 thickness (i.e., 1.5 nm/h for single crystalline Si and 3.4 nm/h for polycrystalline Si (poly-Si)), indicating that the interfacial reaction is the rate-determining step. SiO2 layers with a uniform thickness are formed even on a rough surface of poly-Si thin film.  相似文献   

17.
Raman spectroscopy/mapping is used to investigate the variation of Si phonon wavenumbers, i.e., lower wavenumber (LW ~ 495–510 cm−1) and higher wavenumber (HW ~ 515–519 cm−1) phonons, observed in Si–SiO2 multilayer nanocomposite (NCp) grown using pulsed laser deposition. Sensitivity of Raman spectroscopy as a local probe to surface/interface is effectively used to show that LW and HW phonons originate at surface (Si–SiO2 interface) and core of Si nanocrystals, respectively. The consistent picture of this understanding is developed using Raman spectroscopy monitored laser heating/annealing and cooling experiment at the site of the desired wavenumber, chosen with the help of Raman mapping. Raman spectra calculations for Si41 cluster with oxygen and hydrogen termination show strong mode at 512 cm−1 for oxygen terminated cluster corresponding to the vibration of surface Si atoms. This supports our attribution of LW phonons to be originating at the Si–SiO2 surface/interface. These results along with XPS show that nature of interface (oxygen bonding) in turn depends on the size of nanocrystals and LW phonons originate at the surface of smaller Si nanocrystals. The understanding developed can conclude the ongoing debate on large variation in Si phonon wavenumbers of Si–SiO2 NCps in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We investigate the stability of boron dopants near the interface between crystalline Si and amorphous SiO2 through first-principles density functional calculations. An interstitial B is found to be more stable in amorphous SiO2 than in Si, so that B dopants tend to segregate to the interface. When defects exist in amorphous SiO2, the stability of B is greatly enhanced, especially around Si floating bond defects, while it is not significantly affected near Si–Si dimers, which are formed by O-vacancy defects.  相似文献   

19.
A methodology combining non-destructive X-ray techniques is proposed to study the interfacial zones of periodic multilayers. The used X-ray techniques are X-ray emission spectroscopy induced by electrons and X-ray reflectivity in the hard and soft X-ray ranges. The first technique evidences the presence of compounds at the interfaces and gives an estimation of the thickness of the interfacial zone. These informations are used to constrain the fit of the X-ray reflectivity curves that enables to determine the thickness and roughness of the various layers of the stacks. The results are validated in the soft X-ray range where the reflectivity curves are very sensitive to the chemical state of the elements present in the stack. The methodology is applied to characterize Mo/Si (1-4 nm/2 nm) and B4C/Mo/Si (1 nm/2 nm/2 nm) multilayers. It is shown that the two interfacial zones of the Mo/Si multilayers are composed of the silicides MoSi2 and Mo5Si3. It is found that the interface thickness is about to be 0.4-0.8 nm depending on the samples. The molybdenum silicides are also evidenced at the interfaces of the B4C/Mo/Si multilayers. However, their interface thickness is 0.2 nm thinner than that of the same stack without the B4C layers, these layers being at the Mo-on-Si side or at the Si-on-Mo side. Thus, the B4C layers do not stop but only reduce the interdiffusion between the Mo and Si layers.  相似文献   

20.
Size effects in the resonant nonlinear optical response of amorphous Si/SiO2 multiple quantum wells (MQW) are studied by second-harmonic generation (SHG) spectroscopy in a spectral interval of second-harmonic photon energies from 2.5 to 3.4 eV. The sensitivity of SHG spectroscopy to thickness-dependent electronic structure (sub-band energy position and density of states line shape) of MQW is demonstrated. A monotonic red shift of central energies of SHG resonances by 120 m eV upon increase of the well thickness from 2.5 to 10 ? is observed. This is interpreted as a size dependence of the position of singularities in the combined density of states for a 2D gas of electrons moving in an effective potential well. It is shown that, for agreement with experiment, the simplest (rectangular) shape of the well should be modified in order to take into account the lattice-potential distortion at the interfaces. Received: 16 October 2001 / Revised version: 16 April 2002 / Published online: 6 June 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号