首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
初始位置布局不平衡的疏散行人流仿真研究   总被引:2,自引:0,他引:2       下载免费PDF全文
岳昊  张旭  陈刚  邵春福 《物理学报》2012,61(13):130509-130509
行人初始位置布局不平衡的多安全出口疏散过程, 是行人疏散流仿真研究的热点. 利用行人流动态参数仿真模型, 在实际距离和假想距离"极大极小"路径选择机理的基础上, 改进假想距离的计算方法及其拥堵计算区域, 实现疏散过程的动态平衡; 提出行人位置布局的不平衡系数, 以描述疏散空间内行人初始位置布局的不平衡性. 从行人初始位置随机和固定布局的角度, 仿真研究正常疏散环境下行人布局的不平衡性对疏散时间的影响, 并将仿真结果与原始模型做对比分析. 研究表明, 模型能有效地实现行人流疏散过程的动态平衡, 行人疏散时间受行人位置或安全出口布局的影响较小, 而与安全出口总宽度、 行人的初始数量以及拥堵感知系数有关.  相似文献   

2.
金辉  郭仁拥 《物理学报》2019,68(2):20501-020501
针对楼梯区域行人运动进行观测实验,获得行人上下楼过程中的运动数据,通过对数据进行整理与分析,绘制不同过程中流量-密度变化关系图.通过对流密关系图进行定量分析,掌握楼梯区域行人运动特征,并改进原有元胞传输模型,提出楼梯行人运动模型,仿真模拟行人运动过程.模型中,引入势能修正系数,利用异向行人对元胞势能的影响来改变行人的路径选择;引入流量修正系数,描述不同的物理参数对元胞边界最大流量的影响;引入偏移系数,修正移动规则,增强优先方向对行人路径选择行为的影响.然后,通过比较仿真结果与实验数据,对模型及引入参数进行验证和校准.最后,利用校正模型,模拟研究楼梯区域对向行人运动过程,并对势能修正参数进行了灵敏度分析,进一步研究模型参数对行人运动的影响.研究表明,该模型可以模拟刻画楼梯区域行人运动过程,同时验证了楼梯区域行人集散效率跟行人到达率与行人路径选择有关.  相似文献   

3.
考虑交通出行惯例的双向行人流模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
杨凌霄  赵小梅  高自友  郑建风 《物理学报》2011,60(10):100501-100501
推广了Baek等人最近提出的一个双向行人流模型,提出了两种改进策略,并从行人平均速度-密度关系、行人空间分布密度和位置分布等方面进行了数值分析. 研究发现,引入的两个新策略不仅可以提高行人流的平均速度,而且可以提高道路系统(尤其是道路中央区域)利用率,减轻拥堵状况,有效避免严重堵塞的发生. 改进的策略对行人的心理特点和行为特性等方面考虑更加全面,而且可以较好地模拟高密度的双向行人流. 关键词: 元胞自动机模型 双向行人流 交通惯例  相似文献   

4.
丁益民  杨昌平 《物理学报》2012,61(23):551-556
现实的复杂网络往往具有动态的结构特征.考虑人类流动行为的特点,提出一种随机行走网络模型对人类流动网络进行模拟研究.从度分布、聚类系数、最短路径距离以及位移分布等方面对该模型进行模拟分析,结果表明,该动态复杂网络度分布服从泊松分布,呈现随机网络特征;当通信半径大于某一较小数值时,具有高的聚类系数和短的平均路径长度,呈现小世界网络特征;而位移分布则满足幂律分布,这一结论与近年来人们对人类流动行为的实证研究结果相符合.  相似文献   

5.
无标度立体Koch网络的建立及其结构性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘甲雪  孔祥木 《中国物理 B》2010,19(4):2244-2249
根据经典Koch曲线的构造,利用四面体作为迭代基元构造了一种立体Koch网络并对其结构性质做了研究, 给出了该网络的度分布函数,计算了该网络的团簇系数、平均最短路径长度以及度关联函数.结果表明,所构建的网络是无标度网络,度分布临界指数γ≈332;其团簇系数趋向于常数值0870435;平均路径长度与网络尺寸的对数呈正比关系,说明该网络具有小世界网络特性.另外,计算结果表明knn(k)随k的变化而变化,说明该Koch网络具有一定的度关联性.  相似文献   

6.
一种改进的多速双向行人流元胞自动机模型   总被引:3,自引:0,他引:3       下载免费PDF全文
考虑行人的位置交换、侧向前进和后退行为,建立了一种改进的元胞自动机模型,用于研究地下通道中具有多种运动速度的双向行人流.将改进的元胞自动机模型与Weng的模型进行了比较.计算机模拟表明,改进的模型具有提高系统中行人的平均速度并降低行人占据密度的倾向. 关键词: 双向行人流 元胞自动机 计算机模拟  相似文献   

7.
李明华  袁振洲  许琰  田钧方 《物理学报》2015,64(1):18903-018903
在考虑行人视野范围的随机偏走格子气模型基础上, 引入行人对前方开阔区域的移动偏好特性, 提出改进的格子气模型, 对通道内对向行人流进行仿真研究. 模型再现了对向行人流在不同密度下出现的3种演化过程, 发现了行人密度与对向行人流分层现象的形成具有随机性, 以及统计了概率的变化趋势, 同时分析了分层现象形成概率与系统几何尺寸参数、移动强度参数、右行人流比例参数和视野范围参数等的关系. 分析结果表明, 改进的模型能够再现实际低密度下对向行人流不会出现分层现象的特性. 根据分层形成的概率, 可将对向行人流的密度分为5个区间, 不同区间的行人流演化过程各有差异. 模型和分析结果对理解对向行人流的动态演化过程, 提高通道内对向行人流的走行效率有一定帮助.  相似文献   

8.
丁益民*  丁卓  杨昌平 《物理学报》2013,62(9):98901-098901
本文运用复杂网络理论, 对我国北京、上海、广州和深圳等城市的地铁网络进行了实证研究. 分别研究了地铁网络的度分布、聚类系数和平均路径长度. 研究表明, 该网络具有高的聚类系数和短的平均路径长度, 显示小世界网络的特征, 其度分布并不严格服从幂律分布或指数分布, 而是呈多段的分布, 显示层次网络的特征. 此外, 它还具有重叠的社团结构特征. 基于实证研究的结果, 提出一种基于社团结构的交通网络模型, 并对该模型进行了模拟分析, 模拟结果表明, 该模型的模拟结果与实证研究结果相符. 此外, 该模型还能解释其他类型的复杂网络(如城市公共汽车交通网络)的网络特性. 关键词: 复杂网络 地铁网络 小世界 社团  相似文献   

9.
以步行通道内的单向行人流为研究对象,分析研究行人拉链现象的生成机理,并建立基于Voronoi图的速度修正模型对其仿真研究.首先,从行人追求视野最佳和步行舒适的角度分析拉链现象的生成机理,以行人的视野关注和视野遮挡描述影响行人移动过程中产生拉链偏移的因素;以行人局部密度描述行人的步行舒适度;引入拉链敏感系数描述行人客观偏移的意愿程度;提出单个行人侧向偏移的机制,获得行人最佳的偏移位置.然后,构建基于Voronoi图的行人速度修正仿真模型,考虑行人是否有偏移倾向的主观意愿,并嵌入偏移规则,模拟再现行人的拉链现象.仿真发现:行人的拉链层数与通道宽度成正比,该模型速度密度关系图与实证数据吻合较好;与不考虑拉链效应相比,倾向主动进行侧向偏移的行人占比越大,越有助于提高通道内行人的移动速度、舒适度和空间利用率.  相似文献   

10.
陈然  李翔  董力耘 《物理学报》2012,61(14):144502-144502
地铁站内多方向行人流以不同方式通过瓶颈时具有不同的效率,发生拥堵的机制也有所不同. 本文将地铁站内行人流的交织运动简化为连通双通道内两股行人通过瓶颈的情形. 采用推广的格子气模型,通过引入背景场,使改进的模型可以刻画地铁站内行人流的运动特征, 通过数值模拟研究了两股行人以两种不同方式经过研究区域的清空时间以及瓶颈宽度的影响. 研究发现,在模型中考虑行人沿对角线的运动可以更加准确地描述真实行人运动. 当瓶颈宽度小于临界宽度时,逆向交织的行人经过研究区域具有更高的效率, 验证了行人流实验的结果.此外还详细讨论了在瓶颈处发生拥堵的机理.  相似文献   

11.
董海荣  孟琦  姚秀明  杨晓霞  王千龄 《中国物理 B》2017,26(9):98902-098902
This paper focuses on the simulation analysis of stripe formation and dynamic features of intersecting pedestrian flows.The intersecting flows consist of two streams of pedestrians and each pedestrian stream has a desired walking direction.The model adopted in the simulations is the social force model, which can reproduce the self-organization phenomena successfully. Three scenarios of different cross angles are established. The simulations confirm the empirical observations that there is a stripe formation when two streams of pedestrians intersect and the direction of the stripes is perpendicular to the sum of the directional vectors of the two streams. It can be concluded from the numerical simulation results that smaller cross angle results in higher mean speed and lower level of speed fluctuation. Moreover, the detailed pictures of pedestrians' moving behavior at intersections are given as well.  相似文献   

12.
李永行  贾洪飞  李军  周亚楠  原志路  李延忠 《中国物理 B》2016,25(10):108901-108901
Considering the interlayer height, luggage, the difference between queuing pedestrians, and walking speed, the pedestrian choice model of vertical walking facilities is established based on a support vector machine. This model is verified with the pedestrian flow data of Changchun light-rail transfer station and Beijing Xizhimen transfer station. Adding the pedestrian choice model of vertical walking facilities into the pedestrian simulation model which is based on cellular automata, the pedestrian choice behavior is simulated. In the simulation, the effects of the dynamic influence factors are analyzed. To reduce the conflicts between pedestrians in opposite directions, the layout of vertical walking facilities is improved. The simulations indicate that the improved layout of vertical walking facilities can improve the efficiency of pedestrians passing.  相似文献   

13.
Walking in groups is very common in a realistic walking environment. An extended floor field cellular automaton(CA)model is therefore proposed to describe the walking behavior of pedestrian groups. This model represents the motion of pedestrian groups in a realistic way. The simulation results reveal that the walking behavior of groups has an important but negative influence on pedestrian flow dynamics, especially when the density is at a high level. The presence of pedestrian groups retards the emergence of lane formation and increases the instability of operation of pedestrian flow. Moreover,the average velocity and volume of pedestrian flow are significantly reduced due to the group motion. Meanwhile, the parameter-sensitive analysis suggests that pedestrian groups should make a compromise between efficient movement and staying coherent with a certain spatial structure when walking in a dense crowd.  相似文献   

14.
A. Rangel-Huerta 《Physica A》2010,389(5):1077-1089
A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.  相似文献   

15.
Yan-qun Jiang  Ru-xun Liu 《Physica A》2010,389(21):4623-6143
This paper develops a higher-order macroscopic model of pedestrian crowd dynamics derived from fluid dynamics that consists of two-dimensional Euler equations with relaxation. The desired directional motion of pedestrians is determined by an Eikonal-type equation, which describes a problem that minimizes the instantaneous total walking cost from origin to destination. A linear stability analysis of the model demonstrates its ability to describe traffic instability in crowd flows. The algorithm to solve the macroscopic model is composed of a splitting technique introduced to treat the relaxation terms, a second-order positivity-preserving central-upwind scheme for hyperbolic conservation laws, and a fast-sweeping method for the Eikonal-type equation on unstructured meshes. To test the applicability of the model, we study a challenging pedestrian crowd flow problem of the presence of an obstruction in a two-dimensional continuous walking facility. The numerical results indicate the rationality of the model and the effectiveness of the computational algorithm in predicting the flux or density distribution and the macroscopic behavior of the pedestrian crowd flow. The simulation results are compared with those obtained by the two-dimensional Lighthill-Whitham-Richards pedestrian flow model with various model parameters, which further shows that the macroscopic model is able to correctly describe complex phenomena such as “stop-and-go waves” observed in empirical pedestrian flows.  相似文献   

16.
In this paper, evacuation dynamics in an office building is studied by experiment and simulation. A lattice gas (LG) model is developed. A parameter called ‘exit bias’ is introduced into the model to describe the occupants’ familiarity with different exits in a building. The evacuation experiment, which consists of seven scenarios under various conditions, is conducted to verify the model and calibrate the model’s input parameters such as pedestrian speed and exit bias. The effect of exit width on flow rate, and the effect of occupants’ familiarity with the building on their route selections, are studied. It is found that the accuracy of simulation depends a lot on the model’s pedestrian speed. The optimal pedestrian speed is decided by not only occupant characteristics, but also flow features determined by people distribution, building structure, environment pressure, etc. LG models with proper pedestrian speed are capable of simulating the dynamic process of orderly emergency evacuations.  相似文献   

17.
Study on bi-direction pedestrian flow using cellular automata simulation   总被引:1,自引:0,他引:1  
Hao Yue  Hongzhi Guan  Juan Zhang  Chunfu Shao   《Physica A》2010,389(3):32-539
A simulation of bi-direction pedestrian flow based on cellular automata (CA) will be presented from two aspects: direction split and pedestrians’ walking habit in this paper. The simulation uses Dynamic Parameters Model (DPM) to simplify tactically the decision-making process of pedestrians in their movements. A new parameter right-hand parameter is introduced to describe the pedestrians’ walking preference. The relationships of velocity–density and flow–density will be studied and analyzed. It is found that there are phase transitions at the critical density point, and the pedestrian flow shows distinctive characteristics at different phases with different relationships of velocity–density and flow–density. It is also found that direction split and pedestrians’ walking habit affect the value of critical density point and the figures of velocity–density and volume–density curves. In conclusion, the simulation can reflect and describe some pedestrian flow self-organization phenomena and transition trend of empirical pedestrian flow curves.  相似文献   

18.
Despite considerable interest among engineers and scientists, bi-directional interaction between walking pedestrians and lively bridges has still not been well understood. In an attempt to bridge this gap a biomechanically inspired model of the human response to lateral bridge motion is presented and explored. The simple inverted pendulum model captures the key features of pedestrian lateral balance and the resulting forces on the structure. The forces include self-excited components that can be effectively modelled as frequency-dependent added damping and mass to the structure. The results of numerical simulations are in reasonable agreement with recent experimental measurements of humans walking on a laterally oscillating treadmill, and in very good agreement with measurements on full-scale bridges. In contrast to many other models of lateral pedestrian loading, synchronisation with the bridge motion is not involved. A parametric study of the model is conducted, revealing that as pedestrians slow down as a crowd becomes more dense, their resulting lower pacing rates generate larger self-excited forces. For typical pedestrian parameters, the potential to generate negative damping arises for any lateral bridge vibration frequency above 0.43 Hz, depending on the walking frequency. Stability boundaries of the combined pedestrian–structure system are presented in terms of the structural damping ratio and pedestrian-to-bridge mass ratio, revealing complex relations between damping demand and bridge and pedestrian frequencies, due to the added mass effect. Finally it is demonstrated that the model can produce simultaneous self-excited forces on multiple structural modes, and a realistic full simulation of a large number of pedestrians, walking randomly and interacting with a bridge, produces structural behaviour in very good agreement with site observations.  相似文献   

19.
邝华  李兴莉  韦艳芳  宋涛  戴世强 《中国物理 B》2010,19(7):70517-070517
This paper proposes a modified lattice gas model to simulate pedestrian counter flow by considering the effect of following strength which can lead to appropriate responses to some complicated situations.Periodic and open boundary conditions are adopted respectively.The simulation results show that the presented model can reproduce some essential features of pedestrian counter flows,e.g.,the lane formation and segregation effect.The fundamental diagrams show that the complete jamming density is independent of the system size only when the width W and the length L are larger than some critical values respectively,and the larger asymmetrical conditions can better avoid the occurrence of deadlock phenomena.For the mixed pedestrian flow,it can be found that the jamming cluster is mainly caused by those walkers breaking the traffic rules,and the underlying mechanism is analysed.Furthermore,the comparison of simulation results and the experimental data is performed,it is shown that this modified model is reasonable and more realistic to simulate and analyse pedestrian counter flow.  相似文献   

20.
In China, both the mountainous areas and the number of people who live in mountain areas occupy a significant proportion. When production accidents or natural disasters happen, the residents in mountain areas should be evacuated and the evacuation is of obvious importance to public safety. But it is a pity that there are few studies on safety evacuation in rough terrain. The particularity of the complex terrain in mountain areas, however, makes it difficult to study pedestrian evacuation. In this paper, a three-dimensional surface cellular automata model is proposed to numerically simulate the real time dynamic evacuation of residents. The model takes into account topographic characteristics (the slope gradient) of the environment and the biomechanics characteristics (weight and leg extensor power) of the residents to calculate the walking speed. This paper only focuses on the influence of topography and the physiological parameters are defined as constants according to a statistical report. Velocity varies with the topography. In order to simulate the behavior of a crowd with varying movement velocities, and a numerical algorithm is used to determine the time step of iteration. By doing so, a numerical simulation can be conducted in a 3D surface CA model. Moreover, considering residents evacuation around a gas well in a mountain area as a case, a visualization system for a three-dimensional simulation of pedestrian evacuation is developed. In the simulation process, population behaviors of congestion, queuing and collision avoidance can be observed. The simulation results are explained reasonably. Therefore, the model presented in this paper can realize a 3D dynamic simulation of pedestrian evacuation vividly in complex terrain and predict the evacuation procedure and evacuation time required, which can supply some valuable information for emergency management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号