首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
在350~600 nm波长范围内测定了激光烧蚀Ni等离子体中Ni原子的空间分辨发射光谱.测定了385.83 nm发射光谱线的相对强度和STARK展宽及其随径向的变化特性.结果表明,在沿激光束方向上,当距离靶表面0~2.5 mm范围内变化时,谱线的STARK展宽和谱线的强度都随距靶面距离的增大先增大,但增大到最大值后随距离的进一步增大而减小.谱线强度和STARK加宽的最大值都出现在离靶面约1.5 mm处.  相似文献   

2.
激光诱导Al等离子体发射光谱特性的实验研究   总被引:2,自引:6,他引:2       下载免费PDF全文
本文从实验上研究了不同缓冲气体(He,Ar,N2和Air)中激光Al等离子体的时间分辨发射光谱,研究了原子发射谱线的强度和Stark展宽随延时、缓冲气体性质和压力变化的规律.结果表明原子谱线的强度在3μs左右达到最大值,随着延时的增加,谱线的Stark展宽减小,而缓冲气体压力的增大导致谱线的Stark展宽增大,在实验测定的四种缓冲气体中,Ar气体中谱线的Stark展宽最大.  相似文献   

3.
实验测定了激光诱导Al等离子体中390.068,394.4,396.152,466.3056 nm等谱线的时间、空间分辨特性,由发射光谱线的强度和Stark展宽计算了 Al等离子体中的电子密度,并由实验结果讨论了电子密度的时间空间演化特性.实验结果表明,当延时在100~1500 ns变化时,等离子体巾的电子密度变化范围为0.02×1017~1.4×1017cm-3,在沿激光束方向上,当距离靶表面0~1.8 mm范围内变化时,相应的电子密度范围为0.28x1017~0.95×1017cm-3,等离子体电子密度在沿激光束方向上具有很好的对称性.  相似文献   

4.
环境气体的压强对激光诱导等离子体特性有重要影响.基于发射光谱法开展了气体压强对纳秒激光诱导空气等离子体特性影响的研究,探讨了气体压强对空气等离子体发射光谱强度、电子温度和电子密度的影响.实验结果表明,在10-100 kPa空气压强条件下,空气等离子体发射光谱中的线状光谱和连续光谱依赖于气体压强变化,且原子谱线和离子谱线强度随气体压强的变化有明显差别.随着空气压强增大,激光击穿作用区域的空气密度增加,造成激光诱导击穿空气几率升高,从而等离子体辐射光谱强度增大.空气等离子体膨胀区域空气的约束作用,增加了等离子体内粒子间的碰撞几率以及能量交换几率,并且使离子-电子-原子的三体复合几率增加,因此造成原子谱线OⅠ777.2 nm与NⅠ821.6 nm谱线强度随着气体压强增大而增大,在80 kPa时谱线强度最高,随后谱线强度缓慢降低.而离子谱线N Ⅱ 500.5 nm谱线强度在40 kPa时达到最大值,气体压强大于40 kPa后,谱线强度随压强增加而逐渐降低.空气等离子体电子密度均随压强升高而增大,在80 kPa后增长速度变缓.等离子体电子温度在30 kPa时达到最大值,气体压强大于30 kPa后,等离子体电子温度逐渐降低.研究结果可为不同海拔高度的激光诱导空气等离子体特性的研究提供重要实验基础,为今后激光大气传输、大气组成分析提供重要的技术支持.  相似文献   

5.
激光诱导Co等离子体电子温度的时间空间演化特性研究   总被引:2,自引:1,他引:1  
本文在380~500 nm波长范围内测定了激光烧蚀Co等离子体中Co原子的时间和空间分辨发射光谱.由发射光谱线的强度和Stark展宽分别计算了等离子体电子温度和电子密度,并由实验结果讨论了激光等离子体中电子温度的时间和空间演化特性.实验结果表明,当延时在100~1000 ns范围内变化时,相应的电子温度Te范围为8000~25000 K;当距离靶表面0~1.8 mm范围内变化时,相应的电子温度Te范围为13000~25000 K,电子温度在激光束方向上的分布具有很好的对称性.  相似文献   

6.
本文在350~600 nm波长范围内测定了激光烧蚀Ni等离子体中Ni原子的时间分辨发射光谱.由发射光谱线的强度和Stark展宽分别计算了等离子体电子温度和电子密度,并由实验结果讨论了激光等离子体中电子温度、电子密度的时间演化特性.  相似文献   

7.
实验测定了激光烧蚀Al等离子体中Al原子在380-500nm 波长范围内的时间和空间分辨发射光谱。由Al原子390.068nm、394.4nm、396.152nm、466.3056nm、451.25nm、352 .95nm发射光谱线的强度计算了等离子体电子温度,并由实验结果讨论了激光等离子体中电子温度的时间和空间演化特性。实验结果表明,当延时在100-1500ns范围内变化时,相应的电子温度Te范围为6200K -32700K;当距离靶表面0-1.8mm范围内变化时,相应的电子温度Te范围为9800K- 32700K, 电子温度在沿激光束方向上的分布具有很好的对称性。  相似文献   

8.
王莉  周彧  傅院霞  徐丽 《强激光与粒子束》2020,32(6):061003-1-061003-6
常温常压下,采用波长532 nm的Nd:YAG纳秒激光器激发诱导空气中的铝合金,由高分辨率的光谱仪和ICCD对等离子体发射光谱采集和实现光电转换。研究激光能量、ICCD门延迟和聚焦透镜到样品表面的距离(lens-to-sample distance,LTSD)对谱线信号强度和等离子体电子温度的影响,并分析了产生影响的物理机制。结果表明,固定ICCD门延迟和LTSD,随着激光能量的增大,谱线强度和电子温度均增大;计算结果表明,当激光能量从20 mJ增加到160 mJ时,原子谱线Al I 396.15 nm,Mg I 518.36 nm,离子谱线Mg II 279.54 nm谱线强度相较于20 mJ分别提高了12.83,6.45,10.56倍。固定激光能量和LTSD,ICCD门延迟在100~4000 ns范围内变化时,随着延迟的增加,谱线强度和等离子体电子温度均呈指数形式衰减。固定ICCD门延迟和激光能量,采用焦距为75 mm的聚焦透镜,研究了LTSD对等离子体参数的影响机理。结果表明,聚焦透镜到样品的距离对等离子体的谱线强度和电子温度有较大的影响。等离子体的特征谱线强度和等离子体的电子温度的变化规律基本一致,分别在聚焦透镜到样品表面的距离为73 mm和79 mm处取得峰值,并在73 mm处对应最大值。  相似文献   

9.
环境气体对激光诱导Al等离子体光谱的影响   总被引:2,自引:0,他引:2  
调QNd:YAG脉冲激光(波长1.06μm,脉冲宽度10ns,能量42mj/pulse)烧蚀平面Al靶,在垂直靶面方向,利用光学多道分析系统(OMA),测量了激光诱导产生的等离子体发射光谱分别在环境气体为Air,N2和Ar,气压范围分别在10-2Torr,152Torr,304Torr,532Torr和760Torr下的空间分布。实验表明,随着环境气体压强的增大,光谱的空间分布被压缩,且谱线强度的峰值向靶面方向移动;在相同的气压下,Ar环境下产生的光谱强度明显大于在Air和N2环境下产生的光谱强度;在气压为152Torr的不同环境气体下,均发现光谱在离靶面很近的地方(约0.5mm~1.0mm)减小,甚至消失;在Ar环境气体下,谱线396.1nmAlⅠ的空间分布随着与靶面距离的增大,谱线位置向短波方向有约0.03nm(对应OMA探头的一个二极管阵列)的移动,而谱线394.4nmAlⅠ的移动不太明显。  相似文献   

10.
在低压环境下,由Nd:YAG脉冲激光器产生的1.06μm激光烧蚀金属Al靶产生等离子体,观测了外加电场下其空间分辨发射光谱,并由此分析了谱线相对强度、谱线展宽随外加电压的演化特性。结果发现:原子谱线强度及其半高全宽随外加电压的增加均有明显增大,而离子谱线受外加电压的影响较小。从微观机制上分析推断:外加电场使非稳态等离子体中的电子作定向运动,加剧电子与原子之间的碰撞是上述结果的主要原因。此外,由发射光谱线的Stark展宽计算了等离子体电子密度,并由实验结果讨论电子密度随外加电压的演化特性和空间演化特性。  相似文献   

11.
以脉冲Nd·YAG激光器泵浦的光学参量发生/放大器输出为激发源,获得了一种家庭用煤样品的激光诱导等离子体(laser induced plasma,LIP)发射光谱。谱线线型呈洛伦兹线型,表明等离子体加宽以Stark展宽为主。利用发射谱线的Stark展宽和强度,通过测量等离子体不同位置的发射光谱,确定了等离子体温度和电子密度的空间分布,发现二者在垂直等离子体发光火焰方向相对火焰中心对称分布,沿发光火焰方向不具有对称分布的特点。发光火焰中心的等离子体温度和电子密度最大,且发光强度较大,因此利用光谱技术测量等离子体特征量时,宜采集火焰中心的发射光谱。样品中有些元素的发射谱线线型显示,等离子体中存在很强的自吸收现象,自吸收程度和激发波长及激光能量密切相关,激发波长接近谱线中心波长时,自吸收现象最明显;随激光能量的增加,发射光谱强度增加的同时,自吸收的程度也增大。把这些现象归因于原子跃迁概率的增大及激光强度增加引起的等离子体中粒子数密度的增大。自吸收现象导致实验观测到的发射谱线强度小于LIP的真实辐射强度,对等离子体进行测量时,应选取不存在自吸收现象的谱线,以便于提高测量准确度。  相似文献   

12.
In the present work, we present the spatial evolution of the copper plasma produced by the fundamental harmonic (1064 nm) and second harmonic (532 nm) of a Q-switched Nd:YAG laser. The experimentally observed line profiles of neutral copper have been used to extract the electron temperature using the Boltzmann plot method, whereas, the electron number density has been determined from the Stark broadening. Besides we have studied the variation of electron temperature and electron number density as a function of laser energy at atmospheric pressure. The Cu I lines at 333.78, 406.26, 465.11 and 515.32 nm are used for the determination of electron temperature. The relative uncertainty in the determination of electron temperature is ≈10%. The electron temperature calculated for the fundamental harmonic (1064 nm) of Nd:YAG laser is 10500–15600 K, and that for the second harmonic (532 nm) of Nd:YAG laser is 11500–14700 K at a Q Switch delay of 40 μs. The electron temperature has also been calculated as a function of laser energy from the target surface for both modes of the laser. We have also studied the spatial behavior of the electron number density in the plume. The electron number densities close to the target surface (0.05 mm), in the case of fundamental harmonic (1064 nm) of Nd:YAG laser having pulse energy 135 mJ and second harmonic (532 nm) of Nd:YAG laser with pulse energy 80 mJ are 2.50×1016 and 2.60×1016 cm−3, respectively.  相似文献   

13.
陈根余  邓辉  徐建波  李宗根  张玲 《物理学报》2013,62(14):144204-144204
采用光栅光谱仪 对脉冲光纤激光修锐青铜金刚石砂轮过程中产生的等离子体空间分辨发射光谱进行了测量. 研究了500–600 nm波段范围内的等离子体空间发射光谱强度随激光平均功率和脉冲重复频率的变化情况. 结果表明: 等离子体辐射光谱强度在其径向膨胀方向上距离砂轮表面约2.4 mm处达到最大值. 在局部热力学平衡假设条件下, 根据等离子体中六条铜原子谱线的相对强度, 利用Boltzmann 图法, 计算得到在不同激光功率和重复频 率条件下的等离子体电子温度沿砂轮径向方向的分布规律. 实验结果表明: 在激光修锐青铜金刚石砂轮过程中, 距离砂轮表面约3 mm处等离子体电子温度出现峰值, 其温度最高可达4380 K, 且等离子体电子温度随着激光参数和 空间位置的改变呈现出不同的演变规律. 关键词: 脉冲光纤激光 等离子体发射光谱 激光修锐 电子温度  相似文献   

14.
以Nd·YAG激光器的二倍频输出作为激发源,获得了激光诱导Ni等离子体的发射光谱,基于发射光谱,对等离子体电子激发温度和电子密度进行了测量,其典型值分别为3 714 K,4.67×1016 cm-3。测量了等离子体电子激发温度和电子密度的空间分布,发现沿垂直于激光传播方向的径向,随到中心点距离的增加,等离子体辐射的强度减小,但线型和线宽不变,表明等离子体电子激发温度和电子密度沿径向均匀分布。沿激光传播方向,随到样品表面距离的增加,等离子体辐射强度、电子激发温度和电子密度先增加后降低,在距样品表面1.5 mm处,达到最大值。采用激光诱导击穿光谱技术进行相关探测时,收集距离样品表面1.5 mm处的发射谱,有利于提高探测灵敏度。  相似文献   

15.
发射光谱法研究纳秒激光烧蚀硅等离子体特性   总被引:1,自引:0,他引:1  
利用调Q Nd3+∶YAG激光器三倍频355 nm激光脉冲烧蚀空气环境的硅样品,观测不同脉冲激光能量下产生的等离子体在380~420 nm范围内的时间-空间分辨等离子体发射光谱,观测到在等离子体羽膨胀初期存在N+发射光谱。在局域热力学平衡近似条件下,根据时间-空间分辨等离子体发射光谱计算得到等离子羽体电子温度和电子密度随时间延时存在二次指数衰减变化,等离子体羽体电子温度和电子密度的空间分布近似呈Lorentz分布,发现在确定激光脉冲能量下电子密度空间分布最大值偏离光谱强度最大空间位置并对产生原因进行分析,探讨了等离子体羽参数与激光脉冲能量的关系。  相似文献   

16.
利用单脉冲YAG激光、YGJ Ⅱ激光微区分析仪结合光电检测系统 ,在减压氩气环境下实验研究了金属分析样品发射光谱中CuⅠ 32 4 7nm和CuⅠ 32 7 4nm的时间特性、谱线强度及空间分布 ,并与空气环境下的实验结果进行了比较。实验结果表明在减压氩气环境下 ,激光微区发射光谱与环境气体、环境气压和辅助激发参数密切相关。当辅助电极端面直径为 1 5mm、辅助电极距分析样品表面高度为 4mm、辅助电极间距为3mm、辅助激发电压为 1 30 0V、氩气压力 33 2kPa时 ,CuⅠ 32 4 7nm和CuⅠ 32 7 4nm谱线的发射时间比空气下延长了 50 0 μs,谱线强度约为相同气压空气环境下的 4倍 ,约为 1个大气压空气环境下谱线强度的 2倍 ,谱线的半最大值宽度明显变窄。因此氩气环境延长了谱线的发射时间 ,减少了自吸效应 ,使谱线强度明显增强 ,谱线品质得到显著改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号