首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
高灵敏度调谐式连续波腔衰荡光谱技术   总被引:6,自引:0,他引:6  
建立了一套以分布反馈式(DFB)激光器为光源的高灵敏度连续波腔衰荡光谱测量系统,该系统利用DFB激光器的电流调谐特点使激光在衰荡腔内谐振,利用其电流调制的特点实现入射光的关断,进行衰荡测量.对标准具效应消除前后的系统进行了测试,结果表明,前后系统等噪声探测灵敏度分别为2.56×10-7cm"和1.27×10-8 cm-1.以衰荡腔的纵模间隔为扫描步长对6591.43 cm-1处N2O的氮气加宽线宽系数进行了测量,测量结果分别为0.0819 cm-1和0.0808 cm-1,对测量结果与HITRAN2004数据库中参数间的差别进行了讨论.  相似文献   

2.
针对传统腔衰荡光谱技术浓度获取率低,提出基于双重锁定的连续波腔衰荡吸收光谱技术.通过波长调制一次谐波信号将激光器的频率锁定到C_2H_2吸收线上,同时使用PDH锁频技术将衰荡腔锁定到激光器上,从而避免了测量过程中激光器的频率漂移和腔长的抖动,使测量结果更加精确;并且,由于双重锁定,单次衰荡事件的发生率,也就是浓度信息的获取率只受衰荡时间以及重新锁定时间限制,在本试验系统中采集速率可以达到30 k Hz,可以实现对气体浓度的快速测量.为了提高信噪比,采用Kalman滤波技术,对浓度信息进行实时处理,有效抑制了噪声,根据阿伦方差分析,探测灵敏度可以达到4×10~(-9)cm~(-1)(2 s平均).  相似文献   

3.
基于通讯波段的分布式反馈半导体激光器(DFB),搭建了一套光腔衰荡光谱仪(CRDS)。衰荡光腔由一对反射率高于99.997%的高反镜组成,衰荡腔长约为130 cm,空腔衰荡时间约为150 μs。当光谱平均次数达到1 000次时,光谱仪灵敏度(最小可探测吸收系数)达到5×10-12 cm-1。利用热隔绝的方式稳定衰荡腔长,并使用衰荡光腔自身作为光学标准具,来标定光谱的频率:利用反馈式光谱扫描程序步进改变激光器频率,使之与衰荡腔的纵模频率逐一匹配,从而实现所测得光谱的自动标定。通过测量一氧化碳分子在1.565 μm附近的吸收光谱,测定气体中一氧化碳的含量。将光谱测量结果和标准样品中的一氧化碳含量进行对比,对装置的定量精度进行了检验,表明其对一氧化碳的探测极限达4 ppbv。利用该装置对实际大气中一氧化碳的含量进行了实时监测。  相似文献   

4.
腔衰荡光谱技术(CRDS)作为一种具有高灵敏度高光谱分辨率的检测方法已被广泛用于痕量气体检测。而目前基于CRDS痕量气体检测多针对单一气体进行测量或通过多个激光器产生的多光束进行多种组分气体浓度测量。利用DFB激光器波长可调谐特性,通过强弱吸收峰结合,使用单光束实现了多种温室气体的腔衰荡光谱技术同步检测。由于大气中水汽和二氧化碳浓度较高,为实现同一衰荡系统对三种温室气体的同步测量,在平衡吸收损耗的基础上,选取1 653~1 654 nm内甲烷的强吸收峰与水汽、二氧化碳的弱吸收峰进行测量。通过光谱叠加反演矩阵,分别得到甲烷、水汽、二氧化碳的浓度。在计算测量灵敏度过程中发现,通过去除衰荡过程初期的部分数据点(过滤区间),会对噪声等效吸收系数产生影响。多数情况下,在测量灵敏度计算方面,列文伯格-马夸尔特算法(L-M)会优于离散傅里叶变换法(DFT);但当衰荡曲线的单指数性下降时,上述结论不一定成立。搭建了一个低精细度(F≈6×103)衰荡腔对上述结论进行了实验验证。相较于用于测量温室气体浓度的高精细度衰荡腔(F≈1×105),低精细度衰荡腔的衰荡速率较快,衰荡曲线的单指数性明显低于高精细度衰荡腔。实验表明,在过滤区间长度较短时,采用DFT算法计算得到的噪声等效吸收系数会小于L-M算法得到的结果。当过滤区间长度增加时,L-M算法得到的结果优于DFT算法。在受过滤区间长度影响方面,DFT算法的波动性要明显小于L-M算法。根据Allan方差分析,在512次采样平均(约8 s)下的最小噪声等效吸收系数进行计算,该CRDS装置测量灵敏度为2.4×10-10 cm-1。在25 ℃标准大气压下,对应甲烷、水汽、二氧化碳的测量灵敏度分别为0.64 ppbv,3.5 ppmv和4.0 ppmv。基于该CRDS装置,通过单光束多波长测量方法,利用光谱叠加反演矩阵,测得大气中甲烷、水汽、二氧化碳浓度分别为2.018,3 654和526 ppmv;而采用经典CRDS单波长测量得到的甲烷、水汽、二氧化碳浓度分别为2.037,3 898和630 ppmv。通过与温控调节波长,逐点扫描得到的光谱吸收曲线进行对比,采用多波长测量得到气体浓度进行复合拟合的光谱曲线残差小于单波长测量得到气体浓度进行简单拟合的光谱曲线残差。  相似文献   

5.
 为实现连续波腔衰荡光谱系统的工程化,设计了一套集信号调理、高速采样及数据处理为一体的高集成度数字信号处理(DSP)系统。该系统被用于取代常规连续波腔衰荡光谱系统中由高速数据采集卡及计算机组成的腔衰荡信号测试系统,完成对腔衰荡信号的获取与拟合。该系统最高能实现16 bits/80 MHz的信号采样,并能准确地由腔衰荡信号反演出腔衰荡时间。实验结果表明:结合现有的光反馈式连续波腔衰荡光谱系统,该系统能实现等噪声测量灵敏度为1.0×10-8 cm-1的吸收光谱测量,其重复测量精度可达3‰。  相似文献   

6.
基于光腔衰荡光谱技术,建立了以共焦腔为衰荡腔的单波长反射率测量装置,该装置可用于精密测量全固体激光器高反射率腔镜的反射率,检测得到了高反腔镜在946nm的反射率。实验测得平凹镜和平面镜衰荡时间的平均值分别为1.624μs和821ns,平凹镜的反射率为99.794%,相对误差精确到10^-5;平面反射镜的反射率为99.800%,相对误差精确到10^-4。结果表明,光腔衰荡法可用于高反射率腔镜反射率的测量,与分光光度计测得的结果相比,具有非常高的测量精度。  相似文献   

7.
王春梅  李炯  龚天林  陈扬骎  杨晓华 《光学学报》2007,27(11):2087-2090
腔衰荡光谱技术(CRDS)不仅具有较高的测量灵敏度,还可对样品的绝对吸收进行测量。采用连续激光腔衰荡光谱技术,通过测量O2分子三重禁戒跃迁b1∑g X3∑g-(3,0)带RQ(5)谱线(波数17266.090 cm-1)处,极限真空及不同气压下的衰荡时间,利用逼近法得到空腔寿命为2.9174 ms,由此拟合获得其绝对吸收截面为1.4998(±0.0967)×10-26cm2,与先前的文献估计值一致。由空腔寿命获得的谐振腔高反镜的反射比为99.989(±0.001)%,较通常的测量方法更为精确,该实验条件下的等效吸收程长比几何程长增大了约9090倍。  相似文献   

8.
腔衰荡吸收测量中光源线宽影响研究   总被引:1,自引:0,他引:1  
分析了腔衰荡吸收测量中激光线宽对实验结果的影响和单指数近似的适用范围,提出了衰荡曲线的多项式普适拟合公式。数值模型结果显示吸收较强时多项式拟合可以明显提高测量准确度,从而提高腔衰荡吸收测量的动态范围。  相似文献   

9.
搭建了基于近红外连续激光器的高灵敏度快速扫描光腔衰荡光谱仪(SC-CRDS)。通过压电陶瓷(PZT)快速扫描腔长,并用跟踪电路使腔长自动跟踪激光波长变化,实现衰荡光谱的快速测量。利用CH4在1653.73 nm(6046.95 cm-1)附近的光谱吸收峰,用该装置对CH4气体含量进行测量。通过测量多个光谱点确定吸收线中心吸收峰值和激光波长,并反馈补偿激光中心波长使其稳定在吸收线,成功解决了由于激光器波长/频率严重漂移导致的不能持续准确测量问题。利用标准浓度的CH4样品校准其1653.73 nm吸收峰谱线强度。该光腔衰荡光谱仪装置结构简单,性能稳定,CH4浓度检测限达到1.0×10-9,可用于长时间监测室外空气中的CH4浓度。  相似文献   

10.
CO2的腔增强吸收与高灵敏吸收光谱研究   总被引:6,自引:2,他引:4  
腔增强吸收光谱(CEAS)是在衰荡吸收光谱的基础上发展起来的一种新型的直接吸收光谱技术.文章报道了用中心输出波长为1.573μm的窄线宽连续可调谐半导体激光器(DFB封装)作光源,用两块高反射率平凹透镜(在1.573μm附近,凹面反射率R~99.4%,曲率半径r~1 m)组成对称共焦腔作吸收池的腔增强吸收光谱系统.采用扫描腔长的方法改变谐振腔的模式,当激光器的输出频率与谐振腔的某一腔模之间满足共振匹配关系时,激光被耦合到谐振腔内,用探测器接收透过谐振腔的光信号,同时用波长计精确测量激光器的输出波长.在33.5 cm长的吸收池内测量了吸收强度为1.816×10-23cm-1·(molecule·cm-2)-1的二氧化碳分子的弱吸收谱线,探测灵敏度达到了6.78×10-7 cm-1.实验结果表明,腔增强吸收光谱具有灵敏度高,装置简单,易于操作等优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号