首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The absorption and emission spectra of the YVO4 single crystal co-doped with 1 at.% Nd^3+ and 1 at.% Yb^3+ are investigated. The efficient Nd^3+ → Yb^3+ energy transfer and the back transfer (Yb^3+ → Nd^3+) are observed at room temperature. The fluorescence lifetime of the 4F3/2 level of Nd^3+ in Nd,Yb:YVO4 is measured under 808 nm laser light excitation. The efficiency of Nd^3+ → Yb^3+ energy transfer in YVO4 is determined to be about 34%.  相似文献   

2.
The spectroscopic characterization and fluorescence dynamics of Yb^3+:LiLa(WO4)2 crystal are investigated. The Yb^3+:LiLa(W04)2 crystal exhibits a broad absorption and emission spectral bands, large absorption and emission cross sections, and moderate fluorescence lifetime. Blue light emission around 480 nm is observed at 10 K and is demonstrated through cooperative upconversion from the deexcitation of excited Yb^3+-Yb^3+ pairs.  相似文献   

3.
The upconversion luminescence and dynamics in Er^3+ /Yb^3+ codoped nanocrystalline yttria (7-65 nm) are studied under 980-nm pulsed laser excitation, It is found that the red emission of ^4F9/2-^4I15/2 and the green emission of ^2H11/2/^4S3/2 in nanoparticles with lower concentration of Yb^3+ result from a two-photon excitation, In nanocrystals with higher Yb^3+ concentration, the red emissions from a two-photon excitation, while the green emissions from a three-photon excitation, The luminescence dynamics indicates that as the particle size decreases, both the rise and the decay time constants become shorter, As the size decreases to several nanometres, the rise process nearly disappears, suggesting that the upconversion luminescence originates mainly from self-excitation of Er^3+, instead of the energy transfer of Yb^3+→ Er^3+.  相似文献   

4.
Novel oxyfluoride glasses are developed with the composition of 30SiO2-15Al2O3-28PbF2-22CdF2-0.1TmF3 - xYbF3 - (4.9 - x) AlF3(x=0, 0.5, 1.0, 1.5, 2.0) in tool fraction, Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and near infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm^3+: ^1D2 →^3F4, ^1G4 →^3H6, ^1G4 →^3F4, and ^3H4 →^3H6, respectively, are observed. Due to the sensitization of Yb^3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb^3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.  相似文献   

5.
A novel method of codoping the Er^3+, Yb^3+, and Ho^3+ ions in tellurite glasses is demonstrated to obtain a high efficiency of infrared-to-visible upconversion. Three intense emission bands observed in Er^3+, Yb^3+, and Ho^3+ codoped tellurite glasses centred at 525, 547, and 657nm correspond to Er^3+: ^2H11/2 -4 ^4I15/2, Er^3+: ^4S3/2 →^4I15/2+Ho^3+: ^5S2(^5F4) → ^5Is, and Er^3+: ^4Sa/2 → ^4I15/2+Ho^3+: ^5F5 → ^5Is transitions, respectively. No visible upconversion quenching phenomenon is observed when three rare-earth ions are codoped together in tellurite glasses. In contrast, the upconversion intensity of red and green emissions in Er^3+, Yb^3+, and Ho^3+ codoped glasses is enhanced largely when compared with Er^3+ /Yb^3+-codoped glasses. The dependence of upconversion intensities on excitation power and the possible upconversion mechanisms are evaluated. The three emissions are based on two-photon absorption processes.  相似文献   

6.
We report on transparent Ni^2+-doped MgO-Al2O3-SiO2 glass ceramics with broadband infrared luminescence. Ni^2+-doped MgO-Al2O3-SiO2 glass is prepared by using the conventional method. After heat treatment at high temperature, MgAl2O4 crystallites are precipitated, and their average size is about 4.3 nm. No luminescence is detected in the as-prepared glass sample, while broadband infrared luminescence centred at around 1315 nm with full width at half maximum (FWHM) of about 300 nm is observed from the glass ceramics. The observed infrared emission could be attributed to the ^3T2g(^3F)→^3A2g(^3F) transition of octahedral Ni^2+ ions in the MgAl2O4 crystallites of the transparent glass ceramics. The product of the fluorescence lifetime and the stimulated emission cross section is about 1.6×10^-24 s cm^2.  相似文献   

7.
This paper reports that hexagonal-phase LaF3:Yb0.20^3+,Er0.02^3+ and LaF3:Yb0.20^3+, Tm0.02^3+ nanocrystals (NCs) were synthesized via a hydrothermal method. The transmission electron microscopy, selected area electron diffraction, powder x-ray diffraction, and thermogravimetric analysis are used to characterize the NCs. Under 980 nm excitation, the Yb^3+/Er^3+ and Yb^3+/Tm^3+ codoped NCs colloidal solutions present bright green and blue upconversion fluorescence, respectively. These NCs show efficient infrared-to-violet and infrared-to-visible upconversion. The upconversion fluo- rescence mechanisms of LaF2:Yb0.20^3+, Er0.02^3+ and LaF3:Yb0.20^3+,Tm0.02^3+ NCs are investigated with a 980-nm diode laser as excitation source.  相似文献   

8.
The influence of silver nanoparticles on Er3+ up-conversion in CaF2 precipitated oxyfluoride glass-ceramics is investigated. After heat-treatments, transmission electron microscopy images show that CaF2 nano- crystals precipitate in the glass matrix uniformity, and sliver nanoparticles are spread around the CaF2 nano-crystals simultaneously. Comparing with the samples without Ag doped, high efficiency up-conversion luminescences of Er3+ at 540 and 658 nm are distinctly observed in the silver nanopartieles containing glass-ceramics by the 980-nm excitation. Moreover, since the intensity ratio of green and red emissions changes after silver nanopartieles precipitation, the up-conversion mechanism of Er3+ is discussed.  相似文献   

9.
A novel Tm^3+/Yb^3+ triply-doped glass ceramics containing BaF2 nano-crystals are successfully prepared. Fluoride nanocrystals BaF2 are successfully precipitated in glass matrix, which is affirmed by the X-ray diffraction results. The intense blue (476 nm), green (543 nm), and red (656 nm) emissions of the glass ceramics are simultaneously observed at room temperature under 980-am excitation, and the emission luminescence intensity increases significantly compared with the precursor glass, which is attributed to the low phonon energy of fluoride nanocrystals when rare-earth ions are incorporated into the precipitated BaF2 nanocrystals. Under 980-nm excitation at 400 mW, the international commission on illumination (CIE) chromaticity coordinate (X = 0.278, Y = 0.358) of the tridoped oxyfluoride glass ceramics' upconversion emissions is close to the standard white-light illumination (X = 0.333, Y= 0.333). The results indicate that Tm^3+/Yb^3+ triply doped glass ceramics can act as suitable materials for potential three-dimensional displays applications.  相似文献   

10.
This paper reports that the Tm^3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The roomtemperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Ω2=9.3155×10^-20 cm^2, Ω4=8.4103×10^-20 cm^2, Ω6=1.5908×10^-20 cm^2, the fluorescence lifetime is calculated to be 2.03 ms for ^3F4 → ^3H6 transition, and the integrated emission cross section is 5.81×10^-18 cm^2. Room-temperature laser action near 2μm under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuouswave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06μm with spectral bandwidth of -13.6 nm.  相似文献   

11.
Optical waveguides are fabricated in Nd3^+:y3^+:SrF2 crystals by a 1-kHz femtosecond laser using the double-line approach. Waveguides with different separations (10, 15, and 20 μm) between two consecutive optical breakdown tracks are produced, and their optical performances are explored by end-fire coupling to 780-and 532-nm lasers. Propagation loss of the waveguide with 20-pro separation is estimated. The micro- photohmlinescence and micro-Raman spectra indicate that the original fluorescence and lattice structure of the Nd3^+:y3^+:SrF2 crystals are well preserved in the waveguide. Therefore, the obtained waveguide structures are promising candidate for application in integrated waveguidc lasers.  相似文献   

12.
Electrochemical, thermal, and photophysical properties of novel two- (BPODPA), four- (BBPOPA), and six-branch (TBPOA) triphenylamine chromophores are studied. The decomposition temperature of chro- mophores reaches 373 - 412 ℃. The electrochemical properties is explored by cyclic voltammetry. The ionization potential of chromophores is in the range of 5.14 - 5.18 eV. Excitation at 400 nm reveals emission peaks at 483 - 487 nm and the fluorescence quantum yields are 0.73 - 0.75 in CH2Cl2. Two-photon absorption (TPA) properties of chromophores are measured by nonlinear transmission method. The maximum TPA cross-section values are measured at 758 nm to be 20369 GM (1 GM=10^-50 cm^4 -s/photon) for TBPOA, 7024 GM for BBPOPA, and 1227 GM for BPODPA, respectively. When pumped with 800-nm laser irradiation, chromophores show strong two-photon excited blue-green fluorescence at 502 - 518 nm. These results provide a basis for understanding the electronic and optical properties of the conjugated multi-branch chromoohore in terms of the underlying molecular and electronic structures.  相似文献   

13.
Spectra Analysis of a Novel Ti-Doped LiAlO2 Single Crystal   总被引:5,自引:0,他引:5       下载免费PDF全文
LiAlO2 single crvstals doped with Ti at concentration 0.2at.% are grown by the Czochralskl technique with dimensions φ42×55mm. Ti ions in the crystal are quadrivalence proven by comparing the absorption and fluorescence spectra of pure LiAlO2 and Ti: LiAlO2. After air and Li-rich atmosphere annealing, the absorption peaks in the range of 600-800nm disappear. We conclude that 682 and 756nm absorption peaks are attributed to the VLi and Vo absorptions, respectively: The peaks at 716nm and 798nm may stem from the VLi^+ and absorptions. The colour-centre model can be applied to explain the experimental phenomena. Ti^4+-doping produces more lithium vacancies in the LiAlO2 crystal. The intensities of [LiO4] and the associated bonds remain unchanged, which improves the anti-hydrolyzation and thermal stability of LiAlO2 crystals.  相似文献   

14.
A tellurite fibre of TeO_{2}-ZnO-La_{2}O_{3}-Li_{2}O glass codoped with 20000 ppm ytterbium and 5000 ppm erbium was fabricated by the suction casting and rod-in-tube technologies. The absorption spectrum of Er^{3+}/Yb^{3+} -codoped bulk glass has been measured. From the Judd-Ofelt intensity parameters, the spontaneous emission probability and radiative lifetime τ_{rad} of Er^{3+}:{}^{4}I_{13/2}→{}^{4}I_{15/2} transition for the bulk glass have been calculated. The emission fluorescence spectra and lifetimes around 1.5μm, and subsequent upconversion fluorescence in the range of 500-700nm were measured in fibres and compared with those in bulk glass. The changes in amplified spontaneous emission with fibre length and pumping power was also measured. It was found that the emission spectrum from erbium in fibres is almost twice as broad as the corresponding spectrum in bulk glass when pumped at 980nm.  相似文献   

15.
By using an Ar^+ ion laser, a tunable Rh 6G dye laser (linewidth 0.5cm^-1) pumped by the second harmonic of a YAG:Nd laser and a Coherent 899-21 dye laser as light sources and using a monochromator, a phase-locking amplifier and a computer as the data detecting system, we detect the optical properties of Eu^3+-doped Y2SiO5 crystal. Persistent ,spectral hole burning (PSHB) are observed in the Eu^3+ ions spectral lines (^5 Do-T Fo transition) in the crystal at the temperature of 16K. For 15mW dye laser burning the crystal for 0.1 s spectral holes with hole width about 80 MHz both at 579.62nm and at 579.82nm are detected and the holes can remain for a long time, more than 10h.  相似文献   

16.
We demonstrate experimentally the population inversion between 7S1/2 and 6P3/2 levels of cesium in thermal cesium cell with a 455.5 nm pumping laser.We calculate the relative population probabilities at each level theoretically with the density matrix method.In a steady state,5.8% atoms are at 7S1/2 level and 2.9% at 6P3/2 level,which builds up the population inversion between the two levels.We obtain the fluorescence spectra produced in thermal cesium cell in our experiment.The measured relative intensity of each available fluorescence spectral line in the experiment agrees very well with the theoretical result.The demonstrated population inversion between 7S1/2 and 6P3/2 levels can be used to construct an active optical clock of four-level system with a wavelength of 1469.9 nm.  相似文献   

17.
By measuring the absorption and fluorescence spectra and the fluorescence lifetime of 4F3/2 state of Nd3+ ions in YVO4 (2 at.-%) crystal at different temperature, the effects of temperature on the spectra and the lifetime of F3/2 state have been investigated. As the temperature is increased, the line width of the 4F3/2 -4I11/2 transitions is found to increase and the spectral line toward the longer wavelength, which are duo to the ion-phonon interaction. The variation fluorescence lifetime of the 4F3/2 state of Nd:YVO4 is found to be anomalous in the measured range 8 - 300 K. It is about 81 us at room temperature and decreases to 30 us at 8 K. The experimental results are explained by ascribing to the thermal mixing between the two Stark levels of 4F3/2 state with different lifetime.  相似文献   

18.
A single-mode laser is demonstrated using a newly developed double-clad thulium-ytterbium-doped fiber (TYDF) in a linear cavity formed by two fiber Bragg gratings (FBGs). The YTF used is drawn from a D-shape preform fabricated using the modified chemical vapor deposition and solution doping technique. The laser is operated at 1 901.6 nm via the transition of thulium ions from 3F4 to 3H6 with the assistance of ytterbium to thulium ion energy transfer. The efficiencies of the laser are 0.71% and 0.75% at 927- and 905-nm multimode pumping, respectively. The thresholds of the launched pump power for 927- and 905-nm pumping are 1 314 and 1 458 mW, respectively. A 7-mW output is obtained at a 905-nm pump power of 2 400 mW.  相似文献   

19.
Intense room-temperature near infrared (NIR) photoluminescence (980 nm and 1032 nm) is observed from Yb,Al co-implanted SiO2 films on silicon. The optical transitions occur between the ^2F5/2 and ^2F7/2 levels of Yb^3+ in SiO2. The additional Al-implantation into SiO2 films can effectively improve the concentration quenching effect of Yb^3+ in SiO2. Photoluminescence excitation spectroscopy shows that the NIR photoluminescence is due to the non-radiative energy transfer from Al-implantation-induced non-bridging oxygen hole defects in SiO2 to Yb^3+ in the Yb-related luminescent complexes. It is believed that the defect-mediated luminescence of rare-earth ions in SiO2 is very effective.  相似文献   

20.
苏方宁  邓再德 《中国物理》2006,15(5):1096-1100
The Er^3+/Yb^3+ co-doped TeO2-Nb2O5-Li2O glass is prepared by conventional melting method, and its upconversion spectra are measured. The intense green upconversion luminescence upon excitation with a 976 nm laser diode is observed with the naked eyes. The dependence of luminescence intensity on the ratio of Yb^3+/Er^3+ is discussed in detail, and the relationship between the ratio of green luminescence intensity to red luminescence intensity and the ratio of Yb^3+/Er^3+ is also studied, The luminescence intensity increases with the ratio of Yb^3+/Er^3+ increasing. The ratio of Yb^3+/Er^3+ plays a more important role than the concentration of Er^3+ in determining the upconversion luminescence intensity. The ratio of green luminescence intensity to red luminescence intensity reaches a maximum when ratio of Yb^3+/Er^3+ is 3. Thus the glass could be one of the potential candidates for LD pumping solid-state lasers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号