首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent Ni^2+-doped magnesium aluminosilicate glass ceramics are prepared. The formation of petalite-type crystallites in the glass ceramics is confirmed by x-ray diffraction. Broadband infrared luminescence centred at around 1235nm with full width at half maximum (FWHM) of about 300nm is observed from the Ni^2+-doped glass ceramics. The observed infrared emission could be attributed to the ^3T2(F) → ^3A2(F) transition of octahedral Ni^2+ ions in petalite-type crystallites. Theproduct of the fluorescence lifetime and the stimulated emission cross sections is 1.2 ×10-24 cm^2s.  相似文献   

2.
Broadband near-infrared emission from transparent Ni^2+-doped sodium aluminosilicate glass-ceramics is observed. The broad emission is centred at 1290nm and covers the whole telecommunication wavelength region (1100- 1700hm) with full width at half maximum of about 340hm. The observed infrared emission could be attributed to the 3T2(F) → 3A2(F) transition of octahedral Ni^2+ ions that occupy high-field sites in nanocrystals. The product of the lifetime and the stimulated emission cross section is 2.15 × 10^-24 cm^2s. It is suggested that Ni^2+- doped sodium aluminosilicate glass ceramics have potential applications in tunable broadband light sources and broadband amplifiers.  相似文献   

3.
Er^3+-doped phosphor-tellurite glass for broadband short-length Er^3+-doped fiber amplifier (EDFA) is fabricated and characterized. The differential value (AT) of onset crystalline temperature (Tx) and glass transition temperature (Tg) is 206 ℃. The stimulated emission cross section of Er^3+ is calculated from absorption spectrum by McCumber theory and is 0.87 × 10 ^-20 cm^2 at 1532 nm. A broad 1.5-μm fluorescence spectrum with 54-nm full-width at half maximum (FWHM) is demonstrated. Especially, the maximum phonon energy of undoped phosphor-tellurite glass is 1100 cm^- 1, which restricts the upconversion luminescence. It is possible to pump efficiently at 980 nm. These results indicate Er^3+-doped phosphor-tellurite glass is suitable for fabricating broadband short-length EDFA.  相似文献   

4.
张军杰  戴世勋 《中国物理》2004,13(7):1156-1162
New oxyfluoride glasses and glass ceramics co-doped with Nd^{3+}, Yb^{3+} and Ho^{3+} were prepared. The upconversion of infrared radiation into green fluorescence has been studied for Nd^{3+}, Yb^{3+} and Ho^{3+} in the transparent oxyfluoride glass ceramics. At room temperature very strong green upconversion luminescence due to the Ho^{3+}: ({}^5F_4, {}^5S_2)→{}^5I_8 transition under 800 nm excitation was observed in the glass ceramics. The intensity of the green upconversion luminescence in a 1mol% YbF_3-containing glass ceramic was found to be about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho^{3+} upconversion luminescence in the oxyfluoride glass ceramics is discussed. The upconversion mechanism is also investigated.  相似文献   

5.
The emission at 1530nm and its applications in optical communications are discussed. The efficient width of the emission band △eff, which is up to 91 nm, is larger as compared with silica-based glass, bismuth glass and ZrF4-BaF2-LaFa-AIF3-NaF (ZBLAN) glass doped by Er^3+ ions. Under the excitation of 785 nm laser, the emission integral intensity of 153Onto increases about five times in the glass ceramics higher than that in the glass. This is explained by the quantum cutting process by two-photon emission with phonon assistance. The results indicate that the glass ceramics are a promising candidate for developing broadband optical amplifiers in wavelength-division multiplexed systems.  相似文献   

6.
Near-infrared luminescence is observed from bismuth-doped GeS2-Ga2Sa chalcogenide glasses excited by an 808 nm laser diode. The emission peak with a maximum at about 1260 nm is observed in 80GeS2-2OGa2 Sa:O.fBi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200 nm. The broadband infrared luminescence of Bi-doped GeS2-Ga2Sa chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to claxify the structure of glasses. These Bi-doped GeS2 Ga2Sa chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.  相似文献   

7.
New oxyfluoride g/asses and glass ceramic codoped with Nd3 , Yb3 and Ho3 were prepared. The x-raydiffraction analysis revealed that the heat treatments of the oxyfluoride g/asses could cause the precipitationof (Nd^3 , Yb^3 , Ho^3 )-doped fluorite-type crystals. Very strong green up-conversion luminescence due to theHo3 : (^5F4, ^5S2)→ ^5I8 transition under 800-nm excitation was observed in these transparent glass ceramics.The intensity of the green up-conversion luminescence in a 1-mo1% YbF3-containing glass ceramic was found tobe about 120 times stronger than that in the precursor oxyfluoride glass. The reason for the highly efficient Ho^3 up-conversion luminescence in the oxyfluoride g/ass ceramics is discussed.  相似文献   

8.
杨秋红  周洪旭  陆神洲 《中国物理 B》2010,19(2):20701-020701
Ce3+-doped yttrium lanthanum oxide (Y0.9La0.1)2O3 transparent ceramics is fabricated with nanopowders and sintered in H2 atmosphere. The spectral properties of Ce:(Y0.9La0.1)2O3 transparent ceramics are investigated. There appear two characteristic absorption peaks of Ce3+ ions at 230 nm and 400 nm, separately. It is found that Ce3+ ions can efficiently produce emission at 384 nm from (Y0.9La0.1)2O3 transparent ceramic host, while the emission is completely quenched in Re2O3 (Re=Y, Lu, La) host materials.  相似文献   

9.
The structural and luminescence properties of nanocrystalline ZrO2 :Er^3+ films are reported. Transparent nano-ZrO2 crystalline films doped with Er^3+ have been prepared using a wet chemistry process. An intense roomtemperature emission at 1527nm with a full width at half-maximum of 46 nm has been observed, which is assigned to the ^4Ⅰ13/2 → ^4Ⅰ15/2 intra-4f^n electric transition of Er^3+. Correlations between the luminescence properties and structures of the nanocrystalline ZrO2 :Er^3+ films have been investigated. Infrared-to-visible upconversion occurs simultaneously upon excitation of a commercially available 980-nm laser diode and the involved mechanisms have also been explained. The results indicate that the nanocrystalline ZrO2:Er^3+ films might be suggested as promising materials for achieving broadband Er^3+-doped waveguide amplifiers and upconversion waveguide lasers.  相似文献   

10.
Silica-based Yb 3+-doped glass is prepared by non-chemical vapor deposition.The drawn photonic crystal fiber(PCF) has a strong absorption at 976 nm and emission wavelength of approximately 1 037 nm.The intensity and spectral lineshape of the near infrared(NIR) luminescence of the Yb3+-doped PCF are recorded and discussed in terms of excitation power,excitation wavelength,fiber length,and Yb3+ ion concentration.The emission intensifies as the excitation power and Yb3+ ion concentration increase.The intensity of the shorter wavelength side of the luminescence spectrum decreases as the length of the PCF increases.  相似文献   

11.
The green and red up-conversion emissions centred at about 534, 549 and 663 nm of wavelength, corresponding respectively to the ^2H11/2 → ^4I15/2, ^4S3/2 → ^4I15/2 and ^4F9/2 → ^4I15/2 transitions of Er^3+ ions, have been observed for the Er^3+-doped silicate glass excited by a 978 nm semiconductor laser beam. Excitation power dependent behaviour of the up-conversion emission intensity indicates that a two-photon absorption up-conversion process is responsible for the green and red up-conversion emissions. The temperature dependence of the green up-conversion emissions is also studied in a temperature range of 296-673 K, which shows that Er^3+-doped silicate glass can be used as a sensor in high-temperature measurement.  相似文献   

12.
The Eu 2+ /Tb 3+ /Sm 3+ co-doped oxyfluoride glass ceramics containing Ba2LaF7 nanocrystals are prepared in the reducing atmosphere.The X-ray difiraction results show that Eu 2+ ,Tb 3+ and Sm 3+ ions are enriched into the precipitated Ba2LaF7 nanophase after the annealing process.It deduces efficient energy transfers from Eu 2+ to Tb 3+ and Sm 3+ and intenses warm white luminescence of the glass ceramics. Comparing with the glass,the luminescence quantum yield of the glass ceramics is also enlarged by about 3 times.This demonstrates the potential white light-emitting diode application of the glass ceramics produced in this letter.  相似文献   

13.
A novel Tm^3+/Yb^3+ triply-doped glass ceramics containing BaF2 nano-crystals are successfully prepared. Fluoride nanocrystals BaF2 are successfully precipitated in glass matrix, which is affirmed by the X-ray diffraction results. The intense blue (476 nm), green (543 nm), and red (656 nm) emissions of the glass ceramics are simultaneously observed at room temperature under 980-am excitation, and the emission luminescence intensity increases significantly compared with the precursor glass, which is attributed to the low phonon energy of fluoride nanocrystals when rare-earth ions are incorporated into the precipitated BaF2 nanocrystals. Under 980-nm excitation at 400 mW, the international commission on illumination (CIE) chromaticity coordinate (X = 0.278, Y = 0.358) of the tridoped oxyfluoride glass ceramics' upconversion emissions is close to the standard white-light illumination (X = 0.333, Y= 0.333). The results indicate that Tm^3+/Yb^3+ triply doped glass ceramics can act as suitable materials for potential three-dimensional displays applications.  相似文献   

14.
The ferroelectric crystal Ba2TiSi2O8 with high second-order optical nonlinearity is precipitated in Sm^3+-doped BaO-TiO2-SiO2 glass by a focused 800hm, 250 kHz and 150fs femtosecond laser irradiation. No apparent blue and red emissions are observed at the beginning, while strong blue emission due to second harmonic generation and red emission due to the f-f transitions of Sm^3+ are observed near the focal point of the laser beam after irradiation for 25s. Micro-Raman spectra confirm that Ba2 TiSi2O8 crystalline dots and lines are formed after laser irradiation. The mechanism of the phenomenon is discussed.  相似文献   

15.
Bismuth (Bi)-doped materials have attracted a great deal of attention because of their broadband nearinfrared (near-IR) emission around the wavelength utilized in telecommunications. In this study, broad near-IR emission band from 1 100 to 1 650 nm is generated in the Bi-doped 90GeS2-10Ga2S3 glass and glass-ceramics under 820 nm of light excitation. Based on the analysis of the absorption and emission spectra, the origin of this broadband emission is ascribed to the Bi2-2 dimers. The precipitation of β-GeS2 nanocrystals drastically enhances the emission intensity and lifetime of Bi-doped chalcogenide glass.  相似文献   

16.
Er^3+ :Yb^3+ codoped tellurite-fluorophosphate (TFP) glass ceramic exhibits much stronger upconversion luminescence. The intensity of the 540nm green light and 651 nm red light of the TFP glass ceramic is 120 times and 44 times stronger than that of the fluorophospahte (FP) glass, respectively. XRD analysis shows that the nanocrystal in TFP glass ceramic is SrTe5O11. TFP glass ceramic also displays much higher upconversion fluorescence lifetime and crystallization stability. The narrow and strong peak at 540nm is very ideal for practical upconversion luminescence realization. This work is a new trial for exploring non-PbF2 involved nanocrystal upconversion glass ceramics.  相似文献   

17.
The upconversion luminescence of Er^3+/Yb^3+ ions is researched in a novel transparent oxyfluoride borosil- icate glass and glass ceramics under 980-nm excitation. Fluoride nanocrystals Ba2YF7 are successfully precipitated in glass matrix, which is affirmed by the X-ray diffraction results. Compared with the parent glasses, significant enhancement of upconversion luminescence is observed in the Er^3+/Yb^3+ codoped transparent glass-ceramics, which may be due to the variation of coordination environment around Er^3+ and Yb^3+ ions after crystallization. The possible upconversion mechanism is also discussed.  相似文献   

18.
Optically transparent Er3+/Tm3+/Yb3+ tri-doped oxyfluoride tellurite based nano-crystallized glass ceramics with the batching composition of 73TeO2-15ZnO-7ZnF2-3YF3-1.5YbF3-0.3ErF3-0.2TmF3 (mol%) is prepared by a conventional melting quenching and the subsequent heat treatment processes. The sizes of grown nano-crystals in glass matrix appear to be smaller than 100 nm from the scanning electron mi- croscope measurement. Visible up-conversion luminescence of the as melted glass and glass ceramics is investigated. The three-color up-conversion luminescence intensities by 980-nm pumping are increased significantly due to the heat treatment, and the blue intensity increases with a higher magnitude than other wavelengths after heat treatment.  相似文献   

19.
Er^3 -doped TeO2-WO3-ZnO glasses were prepared and the absorption spectra, emission spectra and fluorescence lifetimes were measured. With more Te02 content in the glasses, the emission full width at half maximum (FWHM) increases while the lifetime of the ^4I13/2 level of Er^3 decreases. The stimulated emission cross-sectionof Er^3 calculated by the McCumber theory is as large as 0.86pm^2. The product of the FWHM and the emissioncross-section σe of Er^3 in TeO2-WO3-ZnO glass is larger than those in other glasses, which indicates that the glasses are promising candidates for Er^3 -doped broadband amplifiers. The Judd-Otfelt parameter Ω6 shows close composition dependence of the 1.5μm emission bandwidth. The more the TeO2 content is, the larger thevalues of Ω6 and FWHM.  相似文献   

20.
姜雄伟  邱建荣  曾惠丹  朱从善 《中国物理》2003,12(12):1386-1389
This paper studies the phenomenon of long-lasting phosphorescence induced by a femtosecond laser in Pr3 -doped ZnO-B2O3-SiO2 glass. With the glass irradiated by a focused femtosecond laser for a short time, the emission of strong reddish long-lasting phosphorescence from the irradiated part of the glass can be observed. The emission peaks are located at 495 and 603 nm in wavelength, showing that the long-lasting phosphorescence originates from the emission of Pr^3 . The intensity of the phosphorescence decreases in inverse proportion to time after the removal of the laser. By analysing the absorption and electron spin resonance spectra of the glass, we find that colour-centres are induced in the glass matrix after the irradiation of the femtosecond laser. A possible mechanism has been provided to account for the generation of long-lasting phosphorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号