首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
2.
Boiling crisis experiments are carried out in the vicinity of the liquid-gas critical point of H2. A magnetic gravity compensation setup is used to enable nucleate boiling at near critical pressure. The measurements of the critical heat flux that defines the threshold for the boiling crisis are carried out as a function of the distance from the critical point. The obtained power law behavior and the boiling crisis dynamics agree with the predictions of the vapor recoil mechanism and disagree with the classical vapor column mechanism.  相似文献   

3.
The thermophysical and hydrodynamic processes in a spherical vapor bubble and the surrounding liquid at increasing external pressure are investigated by using a numerical simulation method. The investigation is performed on the basis of a new mathematical model belonging to the class of models of homobaric bubbles (the pressure in the bubble is homogeneous at nonhomogeneous temperature and density). The model takes into account the following main physical effects: the viscosity of the liquid, the heat conductivity of the liquid and vapor, the surface tension, and the phase transitions at the bubble surface. An energy equation taking into account convective heat transfer and viscous dissipation in the liquid is used to calculate the temperature fields in the liquid and vapor. The model also takes into account the dependence of the thermophysical properties on the temperature. A distinctive feature of the proposed model is that the integral conservation law of the system’s total energy (including the kinetic energy of the liquid, the surface energy, and the internal energy of the liquid and vapor) is exactly satisfied (without allowance for the kinetic energy of the vapor). As a result of the numerical simulation of the compression of vapor bubbles in water, we obtained data for the major characteristics of the process at considerable degrees of compression. It is shown that the heat and mass transfer between the vapor in a bubble and the surrounding liquid considerably slow down the temperature increase in the bubble.  相似文献   

4.
A mathematical model was developed for conjugate heat transfer in a heterogeneous system “solid body ? gas-liquid medium” with account for vapor generation at the surface of hot metal cylinder with cooling by a longitudinal water flow. Results are presented for numerical parametric calculations for influence of thermophysical and hydrodynamic characteristics on the pattern of vapor generation at the cooled cylinder surface.  相似文献   

5.
The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid–liquid–vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.  相似文献   

6.
Heat transfer with vapor condensation inside a longitudinally finned tube is numerically studied. The proposed model considers vapor condensation on two initial flow areas, namely, annular and rivulet. The model allows prediction of pressure difference along the tube length, vapor velocity profiles in the central channel and an interfin groove, and also a velocity profile in the condensate rivulet at the bottom of the interfin channel, local heat transfer coefficients at different fin points, and average heat transfer coefficients over tube section and length. The calculations showed that in the case of vapor condensation in longitudinally finned tubes of a small diameter it is of fundamental importance to divide the flow tube section into a central channel and interfin channels. The governing vapor velocities in these channels may differ by more than an order of magnitude. The reduced vapor velocity, used in engineering calculations, does not reflect the character of dynamic vapor impact on a condensate film on the most part of the heat transfer surface. For tubes with relatively large fins the proposed model describes vapor condensation almost completely,meanwhile, the mass vapor quality by the time of filling of the grooves reaches 0.01–0.05. The highest heat transfer intensification was obtained for “sharp fins” with a high value of the fin head curvature. Comparison of results of calculation by the model with results of the known experiments on water vapor condensation yields a good qualitative and quantitative agreement for low vapor velocities at the channel inlet (under 30 m/s). The wall thermal conductivity coefficient value affects significantly the condensation efficiency.  相似文献   

7.
本文报道了开槽密度对R11在烧结多孔表面池沸腾换热性能影响的实验研究。观察发现,多孔表面开槽,让蒸汽从槽道逸出、液体从多孔区吸入到受热面,将增强池沸腾换热。沸腾特征可分为液体灌注、槽道起泡、底部蒸干三个区。对特定的多孔层,合理开槽可获得较好的换热效果。带槽道的多孔表面实验件与均匀多孔表面相比,在相同壁面过热度条件下,热流密度提高2~10倍,临界热流密度提高2~4倍。  相似文献   

8.
To reveal the physical mechanism of laser ablation and establish the prediction model for figuring the surface of fused silica, a multi-physical transient numerical model coupled with heat transfer and fluid flow was developed under pulsed CO_2 laser irradiation. The model employed various heat transfer and hydrodynamic boundary and thermomechanical properties for assisting the understanding of the contributions of Marangoni convention,gravitational force, vaporization recoil pressure, and capillary force in the process of laser ablation and better prediction of laser processing. Simulation results indicated that the vaporization recoil pressure dominated the formation of the final ablation profile. The ablation depth increased exponentially with pulse duration and linearly with laser energy after homogenous evaporation. The model was validated by experimental data of pulse CO_2 laser ablation of fused silica. To further investigate laser beam figuring, local ablation by varying the overlap rate and laser energy was conducted, achieving down to 4 nm homogenous ablation depth.  相似文献   

9.
刘悦  赵璐璐  周艳文 《中国物理 B》2017,26(11):115201-115201
A one-dimensional(1D) fluid model on capacitively coupled radio frequency(RF) argon glow discharge between parallel-plates electrodes at low pressure is established to test the effect of the driving frequency on electron heating. The model is solved numerically by a finite difference method. The numerical results show that the discharge process may be divided into three stages: the growing rapidly stage, the growing slowly stage, and the steady stage. In the steady stage,the maximal electron density increases as the driving frequency increases. The results show that the discharge region has three parts: the powered electrode sheath region, the bulk plasma region and the grounded electrode sheath region. In the growing rapidly stage(at 18 μs), the results of the cycle-averaged electric field, electron temperature, electron density, and electric potentials for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are compared, respectively. Furthermore,the results of cycle-averaged electron pressure cooling, electron ohmic heating, electron heating, and electron energy loss for the driving frequencies of 3.39, 6.78, 13.56, and 27.12 MHz are discussed, respectively. It is also found that the effect of the cycle-averaged electron pressure cooling on the electrons is to "cool" the electrons; the effect of the electron ohmic heating on the electrons is always to "heat" the electrons; the effect of the cycle-averaged electron ohmic heating on the electrons is stronger than the effect of the cycle-averaged electron pressure cooling on the electrons in the discharge region except in the regions near the electrodes. Therefore, the effect of the cycle-averaged electron heating on the electrons is to "heat" the electrons in the discharge region except in the regions near the electrodes. However, in the regions near the electrodes, the effect of the cycle-averaged electron heating on the electron is to "cool" the electrons. Finally, the space distributions of the electron pressure cooling the electron ohmic heating and the electron heating at 1/4 T, 2/4 T, 3/4 T, and 4/4 T in one RF-cycle are presented and compared.  相似文献   

10.
A high resolution spectral radiative transfer model of the troposphere for computing downwelling radiance and flux density at the surface in the 5–200 μm region has been developed. The model is fast and accurate and takes into consideration all major and minor constituents active in this region, namely, water vapor, carbon dioxide, ozone, nitrous oxide, and methane. It uses the quasi-random band model of absorption for computing atmospheric transmittances due to various bands. Continuum absorption by water vapor in the 8–14 μm region has also been taken into account.The model has been used to examine the sensitivity of downwelling flux to variations of surface water vapor pressure (or surface relative humidity), water vapor scale-height and concentrations of other gaseous constituents of the atmosphere. In addition, sensitivity to changes in a number of cloud parameters, namely, fractional cloud cover, cloud hieght, and high-cloud emissivity, has also been examined. Results obtained with the present model compare well with those from other empirical and semi-empirical correlations. The present work demonstrates, for the first time, the feasibility of using a high-resolution narrow-band model for computing this flux for a meteorological application.  相似文献   

11.
Laser evaporative heating of metallic surfaces generates a recoil pressure at liquid–vapor interface. Since the magnitude of recoil pressure is considerably high, despite the small evaporative area, the pressure force generated normal to the workpiece surface is considerably high. Consequently, pressure force initiates a flexural motion of the workpiece subjected to a laser evaporative heating. In the present study, flexural motion of a steel plate, with a cantilever arrangement, due to laser evaporative heating is considered. Stress field in the workpiece is also taken into account. Three-dimensional motion of the workpiece is modeled and governing equations of motion and stress field are solved numerically using the finite element method. It is found that surface displacement in the order of 20 m is predicted and the maximum equivalent stress in the order of 700 kPa is obtained. Additional copper element in the workpiece alters the temporal variation of stress levels.  相似文献   

12.
This paper estimates anode surface temperature at the current interruption limit by measuring the melting time of a contact material after current interruption and simulating the anode surface temperature. As a result, the minimum anode surface temperature of CuCr(50/50) contact material was about 1750 K. We also calculated the metal vapor density between electrodes with a simplified model. The calculation results showed that the critical vapor density was about 3×1020 atoms/m3. This vapor density is equivalent to the averaged pressure of 8 Pa, which is close to the value of the Paschen minimum  相似文献   

13.
X. Shi  J. L. Xu 《实验传热》2013,26(4):201-222

We provide the high speed flow visualization and dynamic measurement results for the U-shaped and the inverted U-shaped heat driven pumps. The U-shaped heat driven pumps at the high heating powers consist of a succession of tiny bubble nucleation, growth and coalescence process. Once the “larger” spherical bubble or the bubble slug forms, it expands quickly in both upstream and downstream directions. The increased pressure leads to the liquid discharge through the outlet check valve. When the advancing vapor/liquid interface reaches a higher position in the vertical discharge branch, the condensation heat transfer in the discharge branch shrinks the bubble slug, leading to the decreased pressure and initiating the open of the inlet check valve. Thus the fresh liquid can be sucked into the system. Heat driven pumps operating at the low heating powers display the similar process. However, two major differences are identified: (1) A full cycle includes a set of positive pressure pulses corresponding to a set of tiny bubble nucleation, growth and coalescence process in each substage. Only at the end of the cycle, an apparent negative pressure pulse is created. (2) For each substage in each cycle, when the newly formed bubble slug is chasing the ahead “old” bubble slug, the deformed liquid bridge is formed due to the gravity force effect. When the two bubble slugs are merging together, a wave vapor/liquid interface occurs along the bottom of the capillary tube. For the inverted U-shaped heat driven pumps, there are fewer positive pressure pulses included, corresponding to lesser number of new bubble nucleation, growth, and coalescence process. The bubble slug in the capillary tube is very standard with the smooth vapor/liquid interface. The cycle periods and the pumping flow rates are given versus the heating powers.  相似文献   

14.
A relaxation-time model for the relativistic Boltzmann equation of a single-component gas is solved to second, or “Burnett”, order using the relativistic version of the Chapman-Enskog method developed by Marle. Expressions are obtained from this second order solution for the “Burnett” contributions to the heat flux and pressure tensor of the gas. Using the “Burnett” equations, which incorporate these contributions, expressions are then derived for the dispersion and absorption of sound in the gas which agree, in the classical limit, with the results of Wang Chang and Uhlenbeck.  相似文献   

15.
谭文海  王建波  邵成刚  涂良成  杨山清  罗鹏顺  罗俊 《物理学报》2018,67(16):160401-160401
为了统一描述自然界的四种基本相互作用,科学家提出了很多理论模型,其中很多理论认为牛顿反平方定律在近距离下会发生偏离,或存在其他的非牛顿引力作用,而理论的正确与否需要高精度的实验检验.国际上很多研究组在不同间距下采用不同的技术对反平方定律进行了高精度的实验检验,本文重点介绍华中科技大学引力中心采用密度调制法分别在亚毫米与微米范围进行的实验研究进展.在亚毫米范围采用精密扭秤技术,在对牛顿引力进行双补偿、抑制电磁干扰后,结合零实验与非零实验结果,在作用程为70—300μm区间对Yukawa形式的破缺给出国际上精度最高的限制.在微米范围采用悬臂梁作为弱力传感器,通过测量金球和密度调制吸引质量间水平力的变化来检验非牛顿引力是否存在,实验结果不需进行Casimir力和静电力背景扣除,是此间距下不依赖于Casimir力和静电力理论计算模型的两个结果之一.  相似文献   

16.
1前言核态沸腾气泡形成时表面存在液体微层。虽然微层很薄,但对加热过程中的传热和气泡的产生具有重要影响。Lay和Dhirl‘]通过更细致的分析微层内的压力分布预言了微层的形状和热流,但考虑的仅是平板上气泡的液体微层。本文考虑了小的加热圆柱探针上气泡层的生长。当?..  相似文献   

17.
The oxidation kinetics of clean bulk aluminum surfaces exposed to low oxygen pressures (10?8 to 2 × 10?6 torr) at room temperature were followed by measurement of work function changes. The interaction of oxygen with aluminum resulted in a decrease in the work function, indicating that the chemisorbed surface oxygen was unstable and incorporation into the subsurface region took place even at very small surface coverages. A “stable layer” of constant work function was finally formed on the aluminum surface. The limiting work functio nchange (work function change to form the “stable layer”) became less negative with increase in oxygen pressure. It was not possible to explain these results on the basis of previously published oxygen uptake models. A new model based on a pressure dependent limiting amount of outer surface and incorporated oxygen is proposed to explain the pressure dependence of the limiting work function change.  相似文献   

18.
采用SST k-w低雷诺数湍流模型对加热条件下超临界压力CO2在内径di=22.14 mm,加热长度Lh=2440 mm水平圆管内三维稳态流动与传热特性进行了数值计算.通过超临界CO2在水平圆管内的流动传热实验数据验证了数值模型的可靠性和准确性.首先,研究了超临界压力CO2在水平圆管内的流动传热特点,基于超临界CO2在类临界温度Tpc处发生类液-类气“相变”的假设,揭示了水平圆管顶母线和底母线区域不同的流动传热行为.然后,分析了热流密度qw和质量流速G对水平圆管内超临界压力CO2流动换热的影响,通过获取流体域内的物性分布、速度分布和湍流分布等详细信息,重点解释了不同热流密度qw和质量流速G下顶母线内壁温度Tw,i分布产生差异的传热机理,分析结果确定了类气膜厚度d、类气膜性质、轴向速度u和湍动能k是影响顶母线壁温分布差异的主要因素.研究结果可以为超临界压力CO2换热装置的优化设计和安全运行提供理论指导.  相似文献   

19.
A consistent, conservative and accurate scheme has been designed to calculate the current density and the Lorentz force by solving the electrical potential equation for magnetohydrodynamics (MHD) at low magnetic Reynolds numbers and high Hartmann numbers on a finite-volume structured collocated grid. In this collocated grid, velocity (u), pressure (p), and electrical potential (φ) are located in the grid center, while current fluxes are located on the cell faces. The calculation of current fluxes on the cell faces is conducted using a conservative scheme, which is consistent with the discretization scheme for the solution of electrical potential Poisson equation. A conservative interpolation is used to get the current density at the cell center, which is used to conduct the calculation of Lorentz force at the cell center for momentum equations. We will show that both “conservative” and “consistent” are important properties of the scheme to get an accurate result for high Hartmann number MHD flows with a strongly non-uniform mesh employed to resolve the Hartmann layers and side layers of Hunt’s conductive walls and Shercliff’s insulated walls. A general second-order projection method has been developed for the incompressible Navier–Stokes equations with the Lorentz force included. This projection method can accurately balance the pressure term and the Lorentz force for a fully developed core flow. This method can also simplify the pressure boundary conditions for MHD flows.  相似文献   

20.
A transparent heater made of a thin synthetic diamond substrate along with a high-speed camera was used to investigate bubble behavior during pool boiling. The heater design, combined with the selected FC-72 liquid, overcame the difficulty of previous thin-film heater experiments where transparency and adequate heat flux could not be simultaneously achieved. It also resulted in an essentially uniform temperature field over the heater surface. The growth and merging of bubbles were visualized and quantitatively documented. The relative contribution from phase change to the overall heat flux was determined at several heat flux levels. At a heat flux level half of the critical heat flux (CHF), surface bubble nucleation was found to contribute to more than 70% of the heat transfer from the heater surface. At a similar heat flux level, the ratio of dry to wetted area was determined to exceed 1/3, significantly higher than that predicted by a recent hydrodynamic model for CHF (approximately 1/16). This result suggests that modifications are needed for the hydrodynamic model when applied to highly wetting fluid on nearly isothermal surfaces. The merging of bubbles to form vapor blankets over the heater surface was observed, as has been assumed in recent hydrodynamic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号