首页 | 本学科首页   官方微博 | 高级检索  
     检索      

近距离牛顿反平方定律实验检验进展
引用本文:谭文海,王建波,邵成刚,涂良成,杨山清,罗鹏顺,罗俊.近距离牛顿反平方定律实验检验进展[J].物理学报,2018,67(16):160401-160401.
作者姓名:谭文海  王建波  邵成刚  涂良成  杨山清  罗鹏顺  罗俊
作者单位:1.华中科技大学物理学院, 基本物理量测量教育部重点实验室, 引力与量子物理湖北省重点实验室, 武汉 430074;2.中山大学天琴引力物理研究中心, 珠海 519082
基金项目:国家自然科学基金重大项目(批准号:91436212,91736312)、国家自然科学基金(批准号:11705061,11722542,11275076)和国家重点基础研究发展计划(批准号:2010CB832802)资助的课题.
摘    要:为了统一描述自然界的四种基本相互作用,科学家提出了很多理论模型,其中很多理论认为牛顿反平方定律在近距离下会发生偏离,或存在其他的非牛顿引力作用,而理论的正确与否需要高精度的实验检验.国际上很多研究组在不同间距下采用不同的技术对反平方定律进行了高精度的实验检验,本文重点介绍华中科技大学引力中心采用密度调制法分别在亚毫米与微米范围进行的实验研究进展.在亚毫米范围采用精密扭秤技术,在对牛顿引力进行双补偿、抑制电磁干扰后,结合零实验与非零实验结果,在作用程为70—300μm区间对Yukawa形式的破缺给出国际上精度最高的限制.在微米范围采用悬臂梁作为弱力传感器,通过测量金球和密度调制吸引质量间水平力的变化来检验非牛顿引力是否存在,实验结果不需进行Casimir力和静电力背景扣除,是此间距下不依赖于Casimir力和静电力理论计算模型的两个结果之一.

关 键 词:牛顿反平方定律  非牛顿引力  精密测量  Patch电荷静电力
收稿时间:2018-04-10

Recent progress in testing Newtonian inverse square law at short range
Tan Wen-Hai,Wang Jian-Bo,Shao Cheng-Gang,Tu Liang-Cheng,Yang Shan-Qing,Luo Peng-Shun,Luo Jun.Recent progress in testing Newtonian inverse square law at short range[J].Acta Physica Sinica,2018,67(16):160401-160401.
Authors:Tan Wen-Hai  Wang Jian-Bo  Shao Cheng-Gang  Tu Liang-Cheng  Yang Shan-Qing  Luo Peng-Shun  Luo Jun
Institution:1.MOE Key Laboratory of Fundamental Physical Quantities Measurements, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;2.TianQin Research Center for Gravitational Physics, Sun Yat-sen University, Zhuhai 519082, China
Abstract:Many theoretical speculations assume that the Newtonian inverse square law (ISL) needs to be modified in short range, such as the modifications due to gravitation propagating in extra dimensions and the hypothetical interactions mediated by bosons predicted by the physics beyond the standard model. High precision tests of the non-Newtonian gravitational forces are important for verifying the proposed models and help us to further understand gravity. Scientists have performed many tests in different interaction ranges by using different techniques and have not find any nonNewtonian gravitational force up to now. Adopting a gap modulation scheme, the experimental group in Huazhong University of Science and Technology had accomplished the tests of ISL in the millimeter and submillimeter range with torsional balance. The experiment in the millimeter range set the strongest constraints on the Yukawa-type violation from ISL. Recently, they have conducted two other tests in the submillimeter and micrometer range by modulating the density of the source attractor. In the submillimeter range, torsional balance is used to measure the torque acting on the pendulum by a rotating density modulated source attractor. The Newtonian gravitational torque at the frequency of interest is suppressed below the thermal noise of the pendulum by a dual compensation design, whereas the nonNewtonian gravitational torque is preserved if it exists, so that a “Null” test can be realized. The experimental system is verified by comparing the theoretical torque with the measured one when intentionally shifting the attractor away from the position for “Null” test. The strongest constraints on the Yukawa-type violation are achieved in a range of 70-300 μm in this experiment. In the micrometer range, an isoelectronic test of the non-Newtonian forces is performed by sensing the lateral force between a gold sphere and a density modulated source attractor by using a soft cantilever. The attractor is fabricated based on silicon-on-insulator wafer to make its surface isoelectronic and possess a density modulated structure underneath. Two-dimensional (2D) mapping of the force signal indicates that the experimental sensitivity is mainly limited by the electrostatic force arising from the surface patch charges. We analyze the 2D mapping data by using maximum likelihood estimation method and set constraints on the Yukawa-type non-Newtonian gravitational forces without subtracting the model-dependent Casimir force or electrostatic force background. Both experiments show no sign of the non-Newtonian gravitational force, and further experiments with high precision are required to explore the unconstrained parameter space.
Keywords:Newtonian inverse square law  non-Newtonian gravitational force  precision measurement  patch electrostatic force
本文献已被 CNKI 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号