首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic Rankine Cycle (ORC) is an effective way to recycle waste heat sources of a marine diesel engine. The aim of the present paper is to analyze and optimize the thermoeconomic performance of a Series Heat Exchangers ORC (SHEORC) for recovering energy from jacket water, scavenge air, and exhaust gas. The three sources are combined into three groups of jacket water (JW)→exhaust gas (EG), scavenge air (SA)→exhaust gas, and jacket water→scavenge air→exhaust gas. The influence of fluid mass flow rate, evaporation pressure, and heat source recovery proportion on the thermal performance and economic performance of SHEORC was studied. A single-objective optimization with power output as the objective and multi-objective optimization with exergy efficiency and levelized cost of energy (LCOE) as the objectives are carried out. The analysis results show that in jacket water→exhaust gas and jacket water→scavenge air→exhaust gas source combination, there is an optimal heat recovery proportion through which the SHEORC could obtain the best performance. The optimization results showed that R245ca has the best performance in thermoeconomic performance in all three source combinations. With scavenge air→exhaust, the power output, exergy efficiency, and LCOE are 354.19 kW, 59.02%, and 0.1150 $/kWh, respectively. Integrating the jacket water into the SA→EG group would not increase the power output, but would decrease the LCOE.  相似文献   

2.
太阳能跨季节蓄能热泵供暖系统的实验研究   总被引:1,自引:0,他引:1  
联合太阳能热泵与土壤跨季节蓄能技术,提出并设计建立了太阳能跨季节蓄能热泵这一新型的太阳能供暖系统.经过6个月的实验研究,得出以下结论:采用地下蓄热体对太阳能跨季节蓄能,可以解决非采暖季太阳能系统集热器过热的问题,有助于提高系统运行的可靠性;采用以黏土与粉土为主要介质的地下蓄热体蓄热,使用热泵机组提取跨季节储热时,取热率...  相似文献   

3.
One of the ways to make cost-competitive electricity, from concentrated solar thermal energy, is increasing the thermoelectric conversion efficiency. To achieve this objective, the most promising scheme is a molten salt central receiver, coupled to a supercritical carbon dioxide cycle. A key element to be developed in this scheme is the molten salt-to-CO2 heat exchanger. This paper presents a heat exchanger design that avoids the molten salt plugging and the mechanical stress due to the high pressure of the CO2, while improving the heat transfer of the supercritical phase, due to its compactness with a high heat transfer area. This design is based on a honeycomb-like configuration, in which a thermal unit consists of a circular channel for the molten salt surrounded by six smaller trapezoidal ducts for the CO2. Further, an optimization based on the exergy destruction minimization has been accomplished, obtained the best working conditions of this heat exchanger: a temperature approach of 50 °C between both streams and a CO2 pressure drop of 2.7 bar.  相似文献   

4.
Nanofluids, because of their enhanced heat transfer capability as compared to normal water/glycol/oil based fluids, offer the engineer opportunities for development in areas where high heat transfer, low temperature tolerance and small component size are required. In this present paper, the hydrodynamic and thermal fields of a water–γAl2O3 nanofluid in a radial laminar flow cooling system are considered. Results indicate that considerable heat transfer enhancement is possible, even achieving a twofold increase in the case of a 10% nanoparticle volume fraction nanofluid. On the other hand, an increase in wall shear stress is also noticed with an increase in particle volume concentration.  相似文献   

5.
带有蓄热装置的直膨式太阳能热泵系统的模拟研究   总被引:1,自引:0,他引:1  
介绍了一种带有相变蓄热装置的直膨式太阳能热泵系统。以青岛天气为例,对该系统的蓄热模式进行数值模拟,得出蓄热装置进出口制冷剂的温度、蓄热材料的液相率随时间的变化,结果表明在太阳能辐射量变化时,该系统的蒸发温度维持25℃左右,系统能够稳定运行;对系统热力学性质进行理论计算得出系统在冷凝温度为70℃时,系统的COP能维持在5.3左右,系统能够高效运行。  相似文献   

6.
立式升温型溴化锂吸收式热泵的设计与变工况研究   总被引:1,自引:0,他引:1  
本文对立式升温型溴化锂吸收式热泵循环和各部件建立了数学模型,并设计了85℃热水驱动产110℃热水的立式降膜升温型溴化锂吸收式热泵,吸收器输出功率为50 kW。然后对其在热源热水温度和流量变化、冷却水入口温度和流量改变等非设计工况下的工作特性进行了计算与分析研究,得到变工况对于机组性能系数,效率和机组负荷的影响关系图。发现在我们的研究范围内,热源水参数的变化对机组性能的影响要大于冷却水。并且在热源水参数变化过程中,机组性能存在性能急剧变化的拐点,实际运行中应当避免。  相似文献   

7.
The present research focuses the chemical aspect of entropy and exergy properties. This research represents the complement of a previous treatise already published and constitutes a set of concepts and definitions relating to the entropy–exergy relationship overarching thermal, chemical and mechanical aspects. The extended perspective here proposed aims at embracing physical and chemical disciplines, describing macroscopic or microscopic systems characterized in the domain of industrial engineering and biotechnologies. The definition of chemical exergy, based on the Carnot chemical cycle, is complementary to the definition of thermal exergy expressed by means of the Carnot thermal cycle. These properties further prove that the mechanical exergy is an additional contribution to the generalized exergy to be accounted for in any equilibrium or non-equilibrium phenomena. The objective is to evaluate all interactions between the internal system and external environment, as well as performances in energy transduction processes.  相似文献   

8.
采用去离子水为冷却介质,对自行设计的不同结构微方肋散热器内的换热特性进行实验研究,结果表明:在进口温度为20 ℃、进口流量为57.225 L/h、底面平均温度为73.4 ℃时,散热器散热量可达2.83106 W/cm2,可以满足当前高热流密度散热需求;当散热面温度一定时,散热量随着散热器进口流量的增加而增加,但增速随散热器底面温度的增加变缓;努谢尔特数随雷诺数的增加而成幂次方增加,常规针肋结构和微针肋结构换热关系式不满足微方肋散热器特性。为了更好地表达微方肋散热器内的换热特性,拟合了微方肋散热器内对流换热关系式。  相似文献   

9.
Y. Wang  J. Cen 《实验传热》2015,28(1):1-8
Modern electronics require better thermal management technologies to ensure long lifetime stability and reliable working. Aiming to evaluate the feasibility for a loop heat pipe being used for the heat dissipation of electronics, a stainless-steel/water loop heat pipe is design and an experimental system to study its heat transfer performance is set up. Experimental results show that at optimal heat load and with the loop heat pipe being aligned perpendicularly to the horizontal plane, its thermal resistance is lowered to be ~0.27 K/W. The loop heat pipe also shows good startup characteristics and can steadily work as well. All these indicate that the loop heat pipe has the potential to be a good solution for cooling of modern electronics.  相似文献   

10.
基于菲聂尔透镜的聚焦太阳能PV/T系统热电性能研究   总被引:1,自引:0,他引:1  
本文建立了基于菲涅尔透镜的聚焦型PV/T热电联产系统的一维稳态传热模型,对六种不同结构的PV/T系统的热、电效率和(火用)效率进行了计算,利用(火用)效率作为评价标准对六种系统进行了比较.分析表明采用聚焦型PV/T系统,在牺牲少量发电效率的基础上,可以获得具有一定温度的热能;增添玻璃盖板虽然能够减少热损失,但同时使得系统的光学效率降低,减少电池上的能量密度,反而使得系统的(火用)效率降低1%;环境恶劣的情况下,应将集热管外加保温腔体,透镜起到盖板和聚光器的双重作用,在不损失发电量的同时可以提高系统的热效率.  相似文献   

11.
In this study, a novel application of neurocomputing technique is presented for solving nonlinear heat transfer and natural convection porous fin problems arising in almost all areas of engineering and technology, especially in mechanical engineering. The mathematical models of the problems are exploited by the intelligent strength of Euler polynomials based Euler neural networks (ENN’s), optimized with a generalized normal distribution optimization (GNDO) algorithm and Interior point algorithm (IPA). In this scheme, ENN’s based differential equation models are constructed in an unsupervised manner, in which the neurons are trained by GNDO as an effective global search technique and IPA, which enhances the local search convergence. Moreover, a temperature distribution of heat transfer and natural convection porous fin are investigated by using an ENN-GNDO-IPA algorithm under the influence of variations in specific heat, thermal conductivity, internal heat generation, and heat transfer rate, respectively. A large number of executions are performed on the proposed technique for different cases to determine the reliability and effectiveness through various performance indicators including Nash–Sutcliffe efficiency (NSE), error in Nash–Sutcliffe efficiency (ENSE), mean absolute error (MAE), and Thiel’s inequality coefficient (TIC). Extensive graphical and statistical analysis shows the dominance of the proposed algorithm with state-of-the-art algorithms and numerical solver RK-4.  相似文献   

12.
基于热阻网络的大功率LED热管散热研究   总被引:1,自引:0,他引:1       下载免费PDF全文
LED结温高一直是大功率LED发展的技术瓶颈,随着单位热流密度的不断攀升,在自然冷却条件下,单纯的直肋热沉散热方式已不能满足散热要求。应用热管技术设计了热管散热系统,对该系统的传热机理和传热路线进行分析,建立该系统对应的热网络模型,对各部分热阻进行分析与计算,求得总的理论总热阻,计算得出理论结温;同时应用有限元方法对该系统进行仿真分析,对LED模块(0.025 m0.025 m0.005 m)输入30 W 电功率,得出其仿真结温稳定在58.19℃,满足结温小于65℃的要求,说明应用热管的散热系统满足设计要求。由热阻网络模型计算得出的理论结温为57.43℃,与仿真结果相差0.76℃,其误差仅为1.31%,验证了理论分析计算的正确性,对实际工程中热设计具有指导意义。  相似文献   

13.
With the intensification of people’s production and life behaviors, the systemic risks of water, energy and food in the Yangtze River Basin have become increasingly prominent, which has become a bottleneck for sustainable development of social, economic and ecological in the basin. Therefore, studying the symbiotic coordination between water, energy and food is of great significance to promoting regional sustainable development. First, from the perspective of water–energy–food symbiosis, with the water–energy–food ecosystem conceptual model as the nexus, the two-step measurement model of the symbiotic index and the symbiotic level index is used to study the water–energy–food symbiosis of the Yangtze River. Then, we use the BP-DEMATEL-GTCW model to identify the key influencing factors that affect the symbiotic security of the water–energy–food ecosystem. In this research, it is found that the average value of the symbiotic degree of the water–energy–food ecosystem of the 11 provinces or municipalities in the Yangtze River Basin only reached the risk grade. It can also be seen from the identification results of key influencing factors that energy microsystem-related indicators have a greater impact on the symbiotic development of the entire WEF ecosystem. Therefore, special attention needs to be paid to increasing energy sources and reducing expenditure. Relevant departments need to effectively develop primary energy production and expand energy-saving investment through multiple channels to expand energy self-sufficiency and ultimately promote the coordinated and effective development of water, energy and food in the Yangtze River Basin.  相似文献   

14.
新型低熔点熔盐黏度的实验研究   总被引:2,自引:0,他引:2  
熔盐因其具有广泛的使用温度范围,低蒸气压,大热容量,低黏度,良好的稳定性,低成本等诸多特性已成为聚光太阳能热发电中颇有潜力的传热蓄热介质。准确的熔盐热物性对于太阳能发电过程中介质的传热蓄热性能有重要影响。其中熔盐黏度作为重要的热物性之一,对于提高传热效率和降低流动阻力具有决定作用。本文利用研制的高温黏度测量仪对水和HITEC盐的黏度温度特性进行了实验研究,实验结果与文献数据具有较好的一致性,证明了该高温熔盐黏度仪的可靠性。为了降低混合熔盐的熔点,改进其热物性能,本文对Solar Salt进行改性研究,得到两种新型低熔点混合熔盐,并测定得到了黏度温度特性曲线。结果表明,改性后的高温熔融盐黏度有所降低,有利于降低太阳能热发电熔盐传热管路系统的阻力和成本。  相似文献   

15.
冷库预冷流动传热物理场分布研究   总被引:1,自引:0,他引:1  
冷库预冷是传统的果蔬采后预冷方法,前人研究通过数值模拟使冷库预冷过程的流场和温度场可视化,本文进一步分析空气流速、局部平均空气龄、温度、熵产、(火用)损和(火积)耗散等物理场的分布特性,指出其间存在密切联系。塑料筐周围的空气流速和流向与内部的局部平均空气龄有关,并影响内部的传热速率。传热熵产率、传热(火用)损率和(火积)耗散率的分布特性及其变化趋势相似,局部高值与局部平均空气龄较低的区域均出现在塑料筐的表面。  相似文献   

16.
The sorption heat pipe (SHP) is a new heat transfer device, which can be used as a sorption cooler or as a heat pipe. The SHP has a sorbent bed (adsorber/desorber and evaporator) at one end and a condenser+evaporator at the other end. This device is insensitive to some “g” acceleration and could be suggested for space and ground application. The most crucial feature of this device is that in different cases it can be used, for example, as a loop heat pipe, because they have the same evaporator and condenser, or as a SHP. The SHP can be used also as a cryogenic cooler. The SHP is convenient for cryogenic fluid storage, when the system does not work at low pressure and room temperature, and for use in the active cryogenic thermal control systems of spacecraft in orbit (cold plates for infrared observation of the Earth or space), or as an efficient electronic component cooling device.  相似文献   

17.
Thermal management of electronic devices is presently a serious concern. This article investigates the thermal performance of a five-turn open-loop pulsating heat pipe in both start-up and steady thermal conditions. The effects of working fluid, namely water and ferrofluid, heat input, charging ratio, ferrofluid concentration, orientation, as well as application of magnetic field, are explored. Experimental results show that using ferrofluid enhances the thermal performance in comparison with the case of distilled water under certain conditions. In addition, applying a magnetic field on the open-loop pulsating heat pipe charged with ferrofluid improves its thermal performance. Charging ratios that lead to lower thermal are mentioned. Optimum concentration of ferrofluid in steady-state performance is 2.5 g/L. This study helps to design electronic cooling devices more efficiently.  相似文献   

18.
相变材料的低导热性是相变储热器传热过程的主要障碍。在相变材料侧进行强化,是目前提升相变储热器蓄热速率的主要方法。本文采用有限容积法对带有环状翅片的管式相变储热器的蓄热过程进行了数值模拟,得到了温度场、相界面随时间的变化。在此基础上,本文对翅片导热系数、翅片厚度和翅片间距等影响储热速率的因素进行了计算和分析。为相变储热器的优化设计提供了一定的参考。  相似文献   

19.
低品位烟气余热回收过程存在冷凝现象,烟气的放热过程分为显热、潜热两部分。冷凝时,局部热流率和熵产率明显增大;增加水蒸气质量分数、冷却水质量流量和降低烟气入口温度都会导致烟气提前冷凝;存在最优冷却水质量流量使得热回收过程熵产数最小。另外,提出热回收效率评价烟气热回收程度,该指标受冷凝的影响很大。随着烟气中蒸汽质量分数的增加,冷凝过程的影响明显增强,因此,在低品位烟气的全热回收中必须考虑潜热的影响。  相似文献   

20.
This article studies the use of spiral phase-change material as an energy storage to improve the performance of a domestic solar water heater. The heating and cooling tests have been conducted for the vertical and horizontal position of the phase-change material in the water heater tank. The vertical position phase-change material yields better results than horizontal position. The charging energy and system thermal efficiencies of the tank are increased up to 20% and 12%, respectively, when the phase-change material is kept vertically. Also, it is observed that better heat transfer coefficient between water and phase-change material and upgraded thermal stratification during the cooling tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号