首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
以钛酸丁酯、醋酸钙、醋酸锌、柠檬酸和乙二醇为原料,采用溶胶-凝胶法制备Ca2Zn4Ti16O38:Pr3+,Na+发光粉.研究了前驱溶液的pH值对溶胶-凝胶转变过程、发光粉物相组成、样品形貌和发光性质的影响.通过热重-差热分析(TG/DTA)、X射线衍射(XRD)分析、扫描电子显微镜(SEM)对前驱物分解、发光粉物相和颗粒大小进行了研究.采用荧光光谱对材料的光谱性质进行了表征.研究发现前驱溶液pH≤3时,所得发光粉样品为蓬松的、颗粒均匀的单相Ca2Zn4Ti16O38粉末,红色余辉时间较长;随着pH值增大,逐渐有杂质相TiO2、CaTiO3和Zn2TiO4生成,并且样品颗粒逐渐变大,颗粒团聚呈现不规则形状,余辉时间变短.结果表明,只有在pH≤3条件下以溶胶-凝胶法制备Ca2Zn4Ti16O38:Pr3+,Na+发光粉下才能获得被日光有效激发,并呈现余辉衰减慢的红色长余辉(644 nm)发光.  相似文献   

2.
纳米晶Y2O3:Eu3+红色荧光体的发光性质研究   总被引:8,自引:0,他引:8  
研究了纳米晶Y2 O3:Eu3 红色荧光体的发光性质。结果表明 :该荧光体最大激发峰位于 2 5 2 6nm ,最大发射峰位于 6 13 4nm ,随着团聚尺寸的增加、煅烧温度的提高和助熔剂的加入 ,Y2 O3:Eu3 红色荧光体的发光强度增大 ;包膜工艺消除了纳米晶Y2 O3:Eu3 红色荧光体的表面缺陷和悬挂键 ,改善了其发光特性。  相似文献   

3.
谢伟  王银海  全军  邹长伟  梁枫  邵乐喜 《物理学报》2014,63(1):16101-016101
采用高温固相法制备了发光样品Y1.98O3:Eu3+0.01,Dy3+0.01.采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光光谱仪、单光子计数器测试了不同含量的H3BO3对Y1.98O3:Eu3+0.01,Dy3+0.01物相结构、颗粒形貌、发光性能、余辉性能的影响.结果表明当H3BO3含量低于8%(mol)时,样品可保持Y2O3晶格结构,且样品颗粒随H3BO3的含量增加逐渐增大.样品光致发光由Eu3+离子电子的5D0→7FJ跃迁所致,主峰位于612 nm,且发光强度随H3BO3含量的增加呈线性增强.随着H3BO3含量的增加,样品余辉衰减时间逐渐增加,热释光谱分析表明H3BO3的加入增加了基质陷阱能级的深度与浓度,故而导致样品长余辉性能的变化.  相似文献   

4.
用简单的微乳液-微波法合成大小和形貌可控的Y2O3:Eu3+纳米棒晶体.XRD结果表明,所制备样品为Y2O3:Eu3+纯相,属于体心立方晶系.TEM结果表明,随着水乳比ω0从5变化到35时,粒子发光粉的形状由纳米颗粒状变为纳米棒,纳米棒的直径约为30~50 nm,纳米棒长约为200~300 nm.激发光谱和发射光谱分析表明,最大的激发带是位于254 nm的Eu3+-O2-电荷迁移带.最大发射峰位于611 nm,属于Eu3+的特征发射.Y2O3:Eu3+纳米发光粉的发光强度随着ω0的增加而增强.发光寿命分析表明Y2O3:Eu3+纳米棒中Eu3+的发光寿命为2.03 ms.在阴极射线发光真空装置中测得的I-V曲线表明Y2O3:Eu3+纳米棒薄膜的启动电压仅1 300 V.同时,在2 000 V外加电压下可以清楚地观察到Y2O3:Eu3+纳米棒的阴极射线发光为Eu3+离子的特征红光.  相似文献   

5.
采用燃烧法制备了不同Ln3+(Ln=Tb,Tm,Eu)掺杂浓度和不同粒径的Y2O3:Im纳米晶体粉末样品,并通过高温退火获得了相应掺杂浓度的体材料样品.测量了纳米和体材料样品的发射光谱、XRD谱并拍摄了不同粒径样品的TEM照片.研究了纳米Y2O3:Ln晶体粉末中发光中心的浓度猝灭现象和不同发光中心之间的能量传递行为.研究发现,在Y2O3纳米晶体粉末中,Tb3:5D4→7F5和Eu3+:5D0→7F2发光的浓度猝灭与体材料中相似,而Tb3+:5D3→7F5和Tm3+:1D2→3H4发光的猝灭浓度明显高于体材料.这是因为纳米微晶的界面会阻止能量传递的进行,产生较强的尺寸限制效应,抑制发光材料中发光中心之间能量传递的进行,但不同类型的能量传递对粒径尺寸变化的依赖关系不同.尺寸限制效应对长程相互作用类型的能量传递(如电偶极一电偶极相互作用)的抑制作用明显,对短程相互作用类型的能量传递(如交换相互作用)的影响较小.  相似文献   

6.
采用低温燃烧合成法制备了Gd2O3∶Eu3 纳米晶.用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和荧光光谱仪分别对样品的结构、形貌和发光性能进行了研究.结果表明,改变甘氨酸与稀土离子的比例(G/M)、退火温度可以制备出不同结构和晶粒尺寸的Gd2O3∶Eu3 纳米晶.在退火温度为800℃,G/M等于0.83和1.0时,均得到了纯立方相的Gd2O3∶Eu3 纳米晶,随着G/M的增加,Gd2O3∶Eu3 从立方相逐渐向单斜相转变.粉末的晶粒尺寸随着退火温度的增高而增大,晶粒尺寸在10~30 nm之间.立方相的Gd2O3∶Eu3 纳米晶主发射峰位置在612 nm(5D0→7F2跃迁),激发光谱中电荷迁移态发生了红移.  相似文献   

7.
采用燃烧法制备不同离子(M:Li+,Na+,K+,Mg2+,Sr2+,Ba2+,B3+,Al3+)共掺杂的纳米Y2O3∶Eu3+粉末。系统地研究了各掺杂离子对纳米Y2O3∶Eu3+材料的结构、发光性质及其寿命的影响。比较发现,掺杂不仅可以调节纳米材料的尺寸,还可以影响材料的结晶性,尤其是后者对发光性质和荧光动力学过程,如荧光强度、电荷迁移带的位置和5D0的寿命等有重要的影响。  相似文献   

8.
研究了Li+和Er3+共掺Y2O3纳米晶体粉末的上转换发光特性,并重点分析了Li+的掺杂浓度对粉末晶形结构和发光强度的影响.结果表明,采用燃烧法制备出来的样品在Li+掺杂浓度较高的情况下仍能保持良好的晶型,随着Li+共掺浓度的增大,Er3+∶Y2O3纳米晶体在绿光和红光波段的上转换发光强度有了显著的提高.造成发光增强的...  相似文献   

9.
超细Y2O3:Eu荧光粉的阴极射线发光和光致发光   总被引:9,自引:1,他引:8  
本文首次报道由尿素溶胶法制备的球形、超细(120~250nm)高效Y2O3:Eu红色荧光粉的晶体结构及其阴极射线发光和光致发光性质.这种超细颗粒在254nm激发时的发光强度比商用的传统微米样品低.但在中等电压(≤10kV)的电子束激发下,其阴极射线发光强度超过商用微米样品.这种接近纳米的Y2O3:Eu超细颗粒已表现出较强的表面效应.对实验结果进行了分析和讨论.  相似文献   

10.
采用共沉淀法制备了Y2O3∶Tb3+和Y2O3∶Tb3+,Yb3+两种样品。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)和荧光光谱仪分析和测试了样品的形貌、微结构和室温下的荧光光谱,得到了不同掺杂浓度、退火温度、溶液pH值下Y2O3∶Tb3+的最优工艺制备条件:Tb3+浓度1.5%、退火温度1 400℃、溶液偏碱性环境下,样品在300nm光激发下于543nm处有最大绿光发射。详细分析了Tb3+能级结构和跃迁属性与实验光谱的对应关系,阐述了工艺条件的影响机理和主要影响样品发光的荧光猝灭效应。制备的Y2O3∶Tb3+,Yb3+粉体,敏化离子Tb3+与激活离子Yb3+间存在能量传递过程,使样品在近红外区有可观的发光,从能级角度对两离子间的合作下转换发光过程进行了描述,同样分析了该体系下的荧光猝灭过程。实验证明近红外量子剪裁可有效提高掺杂离子的发光效率,在硅太阳能电池等领域有广阔的应用前景。  相似文献   

11.
采用熔融淬冷法制备得到透明的Tm~(3+)/Er~(3+)/Yb~(3+)掺杂镓锗钠玻璃。对比研究了808 nm和980 nm激发下Tm_2O_3含量对样品可见-红外光学光谱特性的影响。结合稀土离子能级结构,分析了Tm~(3+)、Er~(3+)和Yb~(3+)离子之间的能量传递机制。结果表明:在808 nm和980 nm的激发下,Tm~(3+)/Er~(3+)/Yb~(3+)掺杂样品中均观察到了473,655,521,544 nm的蓝、红和绿光。在808 nm激发下,随着Tm~(3+)浓度的增加,Tm~(3+):1 800 nm和Er~(3+):1 530 nm发射强度的比率I1.8/I1.53逐渐增大。由于在Tm~(3+)和Er~(3+)间的能量传递有效地改变了红光和绿光的发射强度,473,521,655 nm的发光强度呈现先升高再降低的趋势,在Tm_2O_3掺杂摩尔分数为0.3%时达到最大值。而在980 nm激发下,由于Yb~(3+)对Er~(3+)和Tm~(3+)的能量传递起主要作用,使得其上转换红光(655 nm)、绿光(521 nm和544 nm)和蓝光(473 nm)的发光强度高于808 nm激发下的上转换发光。  相似文献   

12.
利用溶胶—凝胶方法制备了Er3+和Yb3+共掺杂的Y2O3纳米荧光粉。采用Er3+的2H11/2→4I15/2和4S3/2→4I15/2绿色上转换荧光强度比的方法,研究了由980 nm二极管激光器泵浦所导致的荧光粉样品表面温升现象。结果表明,随着泵浦功率的增加,样品表面温度大幅度上升, 当功率达到1 000 mW时,样品表面的温度达到820 K。该现象对分析稀土离子上转换过程中所出现的功率饱和现象起着重要的作用,并且在高温传感材料、医学生物细胞烧孔方面有着广阔应用前景。  相似文献   

13.
孙曰圣  屈芸  肖监谋  陈达 《发光学报》2004,25(4):359-364
对草酸作为沉淀剂制备的细颗粒红色荧光粉Y2O3:Eu3+进行结构和发光特性研究,结果表明:其一次粒径为20~30nm,团聚尺寸D50=0.53μm。该荧光粉最大激发峰位于252.2nm,较微米级荧光粉233nm红移了19.2nm;最大的发射峰位于612nm,与微米级的相比几乎没有差别。Eu3+离子的掺入构成了发光中心,其最佳掺杂的质量分数为9%,荧光粉发光的猝灭浓度由微米级的6%提高到9%。由于纳米晶存在表面缺陷和悬挂键,其亮度约为微米晶的70%左右,随着团聚尺寸的增加、煅烧温度的提高和助熔剂的加入,荧光粉的发光强度增大。包膜能部分消除表面缺陷和悬挂键,提高发光亮度。荧光粉的色坐标为x=0.6479,y=0.3442。  相似文献   

14.
采用共沉淀法,通过氨水调节沉淀剂碳酸氢铵的pH值,制备了一系列Y<,2>O<,3>:1%Er样品.傅里叶变换红外光谱以及兀素分析表明,沉淀剂pH值在8.0~9.5之间变化时,前驱沉淀物化学结构基本不变;而X射线荧光潜仪分析与SEM形貌表征的结果表明,pH值改变时不仅会导致前驱沉淀物中Er含量的变化.而且使得煅烧后粉末颗粒的粒径及其分布发生改变.测量煅烧后粉末样晶的荧光光谱,结果显示,pH值变化引起的Er含最和颗粒粒径的变化,都会导致粉末样品发光性质产生差异.  相似文献   

15.
采用均相沉淀法制备了Y(OH)3微米颗粒,经1 100℃焙烧后制备出具有上转换发光性质的Yb3+-Tm3+-Gd3+共掺的Y2O3微米晶体,讨论了Yb3+-Tm3+-Gd3+在Y2O3中能量传递过程及壳层对发光强度的影响。980 nm近红外光激发下的上转换光谱表明,在Yb3+-Tm3+-Gd3+共掺Y2O3体系中,核-壳结构大幅提高了Gd3+离子和Tm3+离子的上转换发光强度,尤其是样品在紫外发光部分的增强相比于可见和红外光部分更为明显。同时,通过研究Tm3+和Gd3+在不同波段的发光强度与泵浦功率的关系探讨了氧化物中上转换发光的机制。  相似文献   

16.
林捷  王如志  盖红  王波  严辉 《发光学报》2015,36(1):27-32
采用脉冲激光沉积(PLD)方法在湿法腐蚀后的Si(100)衬底上制备了Y2O3:Bi,Yb减反转光薄膜。所制备的薄膜在300~800 nm波长范围内的平均反射率最低至5.28%,同时在晶体硅太阳能电池最佳响应范围内的980 nm附近表现出了良好的下转光特性。与非减反下转光薄膜相比较,具有减反结构的Y2O3:Bi,Yb下转换薄膜的转光强度有了明显的提升。随着衬底腐蚀时间在一定范围内的延长,Bi3+和Yb3+的发射峰强度线性增大。该减反转光薄膜为太阳能电池效率提高提供了一种简单可行的方法。  相似文献   

17.
共沉淀法制备Y2O2S:Eu3+,Mg2+,Ti4+红色长余辉材料   总被引:3,自引:1,他引:2       下载免费PDF全文
用共沉淀法制备了Y2O2S:Eu3+,Mg2+,Ti4+红色长余辉材料。测量了材料的电子显微形貌、晶体结构和发射光谱。通过与固相法制备的Y2O2S:Eu3+,Mg2+,Ti4+长余辉材料比较,发现两种方法都可以制备粒度基本相同的纯相Y2O2S基质晶体,但共沉淀法样品的颗粒结构更松散。研究了Eu3+浓度对两种方法制备样品的谱线发射强度的影响,通过比较共沉淀法和高温固相法制备的样品中Eu3+5D17F3较高能级跃迁的587.6nm谱线强度随Eu3+浓度的变化,发现共沉淀法更有利于Eu3+均匀进入Y2O2S基质晶格而形成有效的发光中心。  相似文献   

18.
Eu3+或Tb3+掺杂Y2O3纳米材料紫外激发光谱   总被引:2,自引:0,他引:2       下载免费PDF全文
采用燃烧法制备了不同Ln3+(Ln=Eu或Tb)掺杂浓度和不同平均粒径的Y2O3:Ln纳米晶体粉末和体材料样品。研究发现随着粒径的减小,Y2O3:Eu电荷迁移带的位置发生红移;并且,由于存在于近表面低结晶度环境中的Eu3+数量的增加,小粒径样品(5nm)的电荷迁移带还向长波方向发生了明显的展宽。实验中还观察到Y2O3:Tb纳米晶激发谱中4f5d(4f8→4f75d1)跃迁吸收对应激发峰(带)的谱线形状随样品粒径变化存在较大的差异,这是由于Tb3+存在于近表面的低结晶度和颗粒内部的高结晶度两种不同环境中,Tb3+的4f5d跃迁在两种环境中对应的吸收峰位置不同,当样品粒径发生变化时Tb3+处于两种环境中的比例随之变化,造成相应吸收跃迁对应的激发峰(带)强度发生变化,并改变了激发谱的谱线形状。实验中还发现,随着Tb3+(或Eu3+)浓度的减小,Y2O3基质激子跃迁吸收的激发峰对比4f5d跃迁(或电荷迁移带)激发峰的相对强度随之增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号