首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 375 毫秒
1.
多芯片半导体激光器光纤耦合设计   总被引:1,自引:1,他引:0       下载免费PDF全文
应用ZEMAX光学设计软件模拟了一种多芯片半导体激光器光纤耦合模块,将12支808nm单芯片半导体激光器输出光束耦合进数值孔径0.22、纤芯直径105μm的光纤中,每支半导体激光器功率10 W,光纤输出端面功率达到116.84W,光纤耦合效率达到97.36%,亮度达到8.88MW/(cm2·sr)。通过ZEMAX和ORIGIN软件分析了光纤对接出现误差以及单芯片半导体激光器安装出现误差时对光纤耦合效率的影响,得出误差对光纤耦合效率影响的严重程度从大到小分别为垂轴误差、轴向误差、角向误差。  相似文献   

2.
利用空间合束技术和光纤耦合技术将9只波长为915 nm单管芯半导体激光器高效率耦合进光纤中,制备出具有高功率、高亮度输出光纤耦合模块。应用ZEMAX光学软件进行模拟仿真后通过实验验证,光纤耦合模块可以通过芯径105μm、数值孔径0.22的光纤输出大于110 W的功率,并且亮度达到8.64 MW/(cm~2·sr)。  相似文献   

3.
为了提高埋入光纤挠性基板光电互联系统中激光束与光纤之间的耦合效率,设计了一种可分离式的高效光电耦合模块。对耦合模块的结构尺寸进行了设计,并运用Matlab软件分析了激光束经过45°全反射镜时的能流变化情况;针对芯径为62.5μm、数值孔径为0.25的多模光纤,利用Zemax软件仿真模拟光纤耦合系统,并用正交下降法优化耦合系统结构,将单路波长为1 310 nm、输出功率为1 W的垂直腔面激光束耦合进光纤。分析结果表明,耦合效率与轴向偏差、角向偏差成中心对称分布,当制造误差最大时,耦合效率达到79.37%,耦合损耗为1. 00 d B。该光电耦合模块具有较高的定位误差,最高耦合效率可达85.35%,最低耦合损耗为0.69 d B。  相似文献   

4.
随着半导体激光器光源在激光加工领域的应用不断拓展,研制高耦合效率的半导体激光器光纤耦合模块变得十分重要。为了进一步提高光纤耦合激光二极管模块的输出功率,本文应用ZEMAX光学设计软件进行仿真模拟,将12只波长为808 nm、输出功率为10 W的单管半导体激光器通过合束方法高效率耦合进光纤。耦合光纤芯径为150μm、数值孔径为0.22,光纤输出功率为116.2 W,耦合效率为96.8%。  相似文献   

5.
为了研究以单管半导体激光器为基本单元的高功率、高亮度波长合束光纤耦合模块,设计出新型光纤激光器泵浦模块,基于ZEMAX光学设计软件等设计了一种由30支单管半导体激光器组成、可输出3种波长光束的光纤耦合模块。将经快慢轴整形、空间合束、波长合束、光路转向及聚焦的光束耦合进入芯径105μm、数值孔径0.22的普通光纤,最终得到尾纤输出端高于357.91 W的输出功率,光纤耦合效率为99.42%,光功率密度为27.24 MW/cm~2-stras。为了验证模块的实际操作的可行性,分析了光纤端面法线与入射光束之间的夹角对耦合效率的影响,结果显示该夹角对模块的耦合效率影响较小。同时,应用ANSYS软件对模块散热情况的分析结果可知,模块散热性能良好。故该模块各项性能良好,可靠性较高,实现了高功率、高亮度、多波长的多单管半导体激光器光纤耦合模块的设计目的。  相似文献   

6.
张俊  彭航宇  刘云  秦莉  王立军 《发光学报》2012,33(8):895-900
研制了一种单光纤耦合的柔性半导体激光加工光源,该光源由20个传导热沉封装的激光列阵以线阵合束方式耦合而成,在大通道工业水冷条件下,从600 μm芯径、NA为0.2的光纤中连续输出907 W功率,输出光束质量为47 mm·mrad,最终达到工件表面的功率密度为3.21×105 W/cm2,最大插头效率达39%。该激光光源具有直接应用在金属薄板焊接的潜力。  相似文献   

7.
C-mount封装激光器热特性分析与热沉结构优化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了降低单管半导体激光器的结温、提高器件的散热效果,基于C-mount热沉的热特性分析提出了一种优化的台阶热沉结构,研究了单管激光器结温和腔面侧向温度分布曲线的影响。在热沉温度298 K和连续输出功率10 W的条件下,腔长为1.5 mm的典型C-mount封装结构激光器的结温为343.6 K,热阻为4.6 K/W。通过在典型C-mount热沉中引入台阶结构,使封装激光器的结温降低为333.8 K,热阻减小到3.5 K/W。计算表明,其输出功率可提高近20%。  相似文献   

8.
应用ZEMAX光学设计软件对基于min-bar的半导体激光光纤耦合模块进行仿真模拟,采用22只输出功率为60 W的mini-bar半导体激光器组成两列空间叠阵作为耦合光源,通过准直、合束、聚焦等方法高效耦合进入芯径400μm、数值孔径0.22的光纤,输出功率可达1 200 W,光纤耦合效率大于92%。  相似文献   

9.
《发光学报》2021,42(7)
对808 nm的InAlGaAs/AlGaAs半导体激光器芯片的波导厚度进行了优化,研究发现N波导与P波导厚度比值为1.8时芯片电光转换效率最高。基于上述高效率芯片研制出Chip-on-submount(COS)单管和光纤芯径62.5μm、数值孔径0.22的光纤耦合模块,并研究了两种器件在-10~90℃范围内的效率特性。结果显示,温度由-10℃升高到90℃,COS单管的载流子泄漏占比由1.18%增加到16.67%,光纤耦合模块的载流子泄漏占比由1.99%增加到17.73%,表明温升引起的载流子泄漏加剧是导致电光转换效率降低的主要因素。此外,还研究了高温老炼、热真空、空间辐照对光纤耦合模块电光转换效率的影响,并揭示了导致器件电光转换效率降低的内在因素。  相似文献   

10.
为实现高功率光纤包层光剥离器被动冷却,需要同时对光纤和封装壳体进行有效热管理。采用一种基于铁氟龙毛细管分段化学腐蚀光纤的制备技术,使用紫铜作为壳体材料,并通过有限元分析算法对壳体温度场进行仿真计算,对壳体各个结构参量进行优化分析,设计了满足500 W散热能力的包层光剥离器,并开展了实验验证。研究结果表明,采用铁氟龙管分段腐蚀法,包层光剥离比达到23.7 dB,光纤裸纤上的功率温升速率仅0.007 ℃/W。采用优化设计的壳体,在540 W功率注入下,包层光剥离器使用水冷冷板冷却可以连续出光,壳体最高温度58.7 ℃,使用相变冷板冷却可以单次安全出光50 s,壳体最高温度80 ℃。此研究结果可以为高功率光纤激光设计与研发提供重要参考。  相似文献   

11.
GaAs基高功率半导体激光器单管耦合研究   总被引:8,自引:8,他引:0  
设计了一种高亮度、高功率半导体激光器单管耦合输出模块, 采用波长为975nm的10W的GaAs基半导体激光器, 将半导体激光器输出光束耦合进数值孔径0.18、纤芯直径105μm的光纤中, 获得10A电流下的输出功率为9.37W, 耦合效率为94.3%, 亮度为1.64MW/(cm2·str)。  相似文献   

12.
用3只976 nm半导体激光短列阵作为子模块,研制出连续工作的百瓦级高亮度光纤耦合模块。首先,利用光束转换器将每个半导体激光短列阵进行光束整形;然后采用空间复用技术将3个半导体激光短列阵在光参数积小的方向上叠加,并利用倒置伽利略望远镜作为扩束器进一步压缩发散角;最后利用优化结构的透镜组将激光聚焦到芯径200 μm,数值孔径为0.22的光纤中。测量结果显示:聚焦后激光的发散角为24.8°,焦平面的光斑尺寸为175.2 μm;耦合后测量光纤出光功率可达107 W,对应亮度为2.23 MW/(cm2·sr),达到了国内利用列阵进行光纤耦合的领先水平;在工作电流为52.5 A时,电光转换效率为43.1%,远高于全固态等激光器;最后测量本模块在不同驱动电流时的光谱,并以此计算出模块的热阻为1.29 K/W,说明它的散热性能良好。结果表明,本光纤耦合模块适合应用于泵浦光纤激光器、医疗和激光加工等领域。  相似文献   

13.
高亮度半导体激光阵列光纤耦合模块   总被引:7,自引:6,他引:1       下载免费PDF全文
利用2只915 nm半导体激光短列阵作为子模块,设计并研制出连续输出的高亮度光纤耦合模块。首先对每个半导体激光短列阵进行光束整形,从而提高它的光束质量;然后采用空间复用技术将这两个半导体激光短列阵出射的激光在光参数积小的方向上叠加,并利用偏振复用技术进一步提高光束质量;最后利用单片非球面透镜将激光聚焦到芯径为100 μm、数值孔径为0.22的光纤中。测量结果显示:在工作电流为52.5 A时,聚焦镜焦平面的光斑尺寸为105.4 μm;耦合后测量光纤出光功率可达72.6 W,对应亮度为6.08 MW/(cm2·sr),模块的电光转换效率为42.2%。最后测量了模块在不同驱动电流时的光谱,证明该模块的散热性能良好。  相似文献   

14.
范嗣强  潘英俊 《发光学报》2015,36(10):1207-1211
利用节流的高压冷却介质在微蒸发腔内相变吸热,设计了一种用于大功率激光二极管制冷的封装组件。该组件采用高热导的无氧铜,用精密线切割、化学腐蚀等技术制作微蒸发腔,再通过自制的焊接设备完成制冷组件的封装。按照大功率激光二极管条的发热模型,理论上对微蒸发腔制冷组件的温度分布进行了数值模拟,结果与60 W激光二极管条的散热实验符合较好,得到制冷剂流量为23 m L/min时的热阻为0.289℃/W。  相似文献   

15.
200W级高亮度半导体激光器光纤耦合模块   总被引:2,自引:0,他引:2  
光纤激光器系统需要高可靠性、高亮度、高功率光纤耦合输出二极管激光器模块作为泵浦源。基于mini-bar二极管激光器芯片,采用光束精密准直技术、自由空间合束技术来获得高亮度、高功率光纤耦合输出,针对光纤芯径为200μm、数值孔径为0.22的多模光纤,开展了线偏振二极管激光光纤耦合实验,实验结果表明:光纤稳定输出功率达280 W,对应亮度为5.87 MW/(cm2·sr),电-光效率为45.0%。采用偏振合束技术,光纤预期输出功率可达500 W,对应亮度超过10 MW/(cm2·sr)。该方法可应用于研制数百瓦级高亮度二极管激光光纤耦合输出激光器模块。  相似文献   

16.
为降低半导体激光芯片的慢轴远场发散角,提高其慢轴方向的光束质量,设计了横向热流抑制的封装结构。利用热沉间的物理隔离,削弱了半导体激光芯片慢轴方向上的温度梯度,有效降低了半导体激光芯片慢轴方向的发散角。采用热分析模拟了不同封装结构下芯片发光区的温度分布,并对波长915 nm的窄条宽半导体激光芯片进行封装。实验结果表明,在工作电流15 A,封装在隔离槽长4 mm,脊宽120 μm刻槽热沉上的芯片,其慢轴远场发散角由12.25°降低至10.49°,相应的光参量积(BPP)由5.344 mm·mrad 降低至4.5763 mm·mrad,慢轴方向亮度提升了约5.5%。实验结果表明,横向热流抑制的封装结构可以有效地削弱半导体激光芯片慢轴方向上由热透镜效应引起的高阶模激射,从而降低其慢轴远场发散角。  相似文献   

17.
设计并研制了一种多线阵半导体激光器的高亮度光纤耦合输出模块.激光器芯片采用了分子束外延方法生长的宽波导、双量子阱结构AlGaAs/GaAs激光器外延材料,激光器模块采用6只准直的线阵半导体激光器,器件腔长为1.2 mm,单个发光单元宽度为100 μm,发光单元周期为500 μm,单线阵器件包括19个发光单元,单线阵器件的连续输出功率为50 W,每只单线阵器件的准直输出光束经过空间合束后再通过光束对称化变换实现了多线阵器件输出的高光束质量功率合成,采用平凸柱透镜实现了合束光束与400 μm芯径、数值孔径0.22石英光纤的高效率耦合,整体耦合效率达到65%,最大耦合输出功率达到195 W,光纤端面功率密度达到1.55×105 W/cm2.  相似文献   

18.
报道了高功率、高光束质量的垂直腔面发射半导体激光器(VCSEL)侧泵的Nd:YAG激光振荡器。从VCSEL泵浦源的主动冷却的热沉结构出发,设计了5个227 W的VCSEL线阵,并且通过优化侧面泵浦大口径激光棒的结构,研制成了具备480 W输出能力的棒状激光模块,相应的光-光效率为49.7%。在此基础上,设计了一种高功率、高光束质量的VCSEL侧面泵浦棒状Nd:YAG激光振荡器。腔内插入望远镜光学元件,并通过优化各光学元件的参数使其工作在热近非稳区域,以达到增大基横模体积和抑制高阶横模目的。最终,获得114 W的输出功率,相应的平均光束质量因子M2为1.42。由于VCSEL具备优秀的波长-温度稳定性,这种高功率、高光束质量的VCSEL泵浦的固体激光器在工业、空间等领域,具有极为广阔的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号