首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
氢的物理和化学吸附是氢存储的基本形式,而H2分子的解离能垒是决定可逆储氢动力学性能的重要因素.纳米团簇是研究材料储氢性能的重要物质层次,研究氢与Na-Al团簇的相互作用性质能够了解纳米尺度的Na-Al氢化物的储氢性能.本文利用密度泛函理论,计算研究了H2分子在较小的合金团簇Na2Al6上的吸附与解离性能.结果表明H2分子在Na2Al6团簇上是弱的物理吸附,但很容易发生解离.氢分子的解离能垒很低,解离可以在环境温度下发生,纳米结构的Na2Al6团簇具有良好的化学储氢性能.  相似文献   

2.
本文在8 7GPa压力范围内研究了三聚氰胺(C3N6H6)的高压原位Raman光谱。通过内、外Raman活性模的压致效应,发现在1 5GPa和6 0GPa压力下该分子晶体发生了压致结构相变。用空间群相关原理确认在1 5GPa压力下它从单斜相转变为三斜相;在6 0GPa压力下又发生了另一次结构相变。然后在室温高压条件下对三聚氰胺进行了原位同步辐射能量散射x-ray衍射实验(EDXD),在14 7GPa压力范围内,观察到常压下为单斜晶系的三聚氰胺经历了两次压致结构相变。在1 3GPa下,三聚氰胺分子晶体从单斜相转变为三斜相;在8 2GPa又转变为正交相。本实验结果为利用三聚氰胺碳氮有机分子晶体高温高压合成超硬C3N4共价晶体的研究提供了重要信息。  相似文献   

3.
利用杂化密度泛函B3LYP方法, 在6-311+G(d, p)基组水平上对Si6和Li修饰的Si6团簇的几何结构和电子性质及储氢性能进行模拟计算和理论研究. 结果表明, Si6团簇最低能量构型为笼型结构, 纯Si6团簇不能有效吸附氢分子. Li原子的引入显著改善了Si6团簇的储氢能力. 以两个Li原子端位修饰Si6团簇为载体, 其氢分子的平均吸附能为1.692~2.755 kcal/mol, 每个Li原子周围可以有效吸附五个氢分子, 储氢密度可达9.952wt%. 合适的吸附能和较高储氢密度表明Li修饰Si6团簇有望成为理想的储氢材料.  相似文献   

4.
利用杂化密度泛函B3LYP方法,在6-311+G(d,p)基组水平上对Si_6和Li修饰的Si_6团簇的几何结构和电子性质及储氢性能进行模拟计算和理论研究.结果表明,Si_6团簇最低能量构型为笼型结构,纯Si_6团簇不能有效吸附氢分子.Li原子的引入显著改善了Si_6团簇的储氢能力.以两个Li原子端位修饰Si_6团簇为载体,其氢分子的平均吸附能为1.692~2.755 kcal/mol,每个Li原子周围可以有效吸附五个氢分子,储氢密度可达9.952 wt%.合适的吸附能和较高储氢密度表明Li修饰Si_6团簇有望成为理想的储氢材料.  相似文献   

5.
锂原子修饰B6团簇的储氢性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
阮文  罗文浪  余晓光  谢安东  伍冬兰 《物理学报》2013,62(5):53103-053103
利用密度泛函理论研究B6和LimB6 (m= 1–2)团簇的结构及其储氢性能. 结果表明, 氢分子在B6团簇的三种可能结构中均发生解离吸附, Li原子在B6团簇表面不发生团聚,每一个Li原子均吸附几个氢分子. 其中以两个Li原子修饰笼形B6团簇吸附完整氢分子数最多,储氢质量分数为20.38%, 氢分子的平均吸附能为1.683 kcal/mol,表明了它在常温常压条件下作为储氢材料的可行性. 关键词: mB6 (m=1-2)团簇')" href="#">LimB6 (m=1-2)团簇 密度泛函理论(DFT) 吸附能 储氢性能  相似文献   

6.
张轶杰  唐春梅  高凤志  王成杰 《物理学报》2014,63(14):147401-147401
采用密度泛函理论中的广义梯度近似研究C6Li吸附H2O分子并将之进行分解的催化过程. 几何优化发现:Li原子最稳定的吸附位置是位于C 原子顶位上方. 研究表明,第一个H2O 分子吸附在C6Li上需要克服1.77 eV的能量势垒,然后分解为H和OH且与Li原子成键. 当吸附第二个H2O分子时,第二个H2O分子需要克服1.2 eV的能量势垒分解为H和OH,其中H与Li原子上的H原子结合成H2,OH则替代Li 原子上的H结合在Li原子上. 因此C6Li 可以作为催化剂将H2O分子进行分解得到H2. 分析可知:C6Li主要是通过Li原子与H2O之间形成的偶极矩作用来吸附H2O 分子,与C60Li12 的储氢机制类似. 研究结果可为储氢材料的制备提供一个新的思路. 关键词: 6')" href="#">C6 Li 2O')" href="#">H2O 密度泛函理论  相似文献   

7.
卢其亮  黄守国  李宜德 《物理学报》2013,62(21):213601-213601
利用密度泛函理论的方法研究了Mg原子修饰的封闭型六 硼烷B6H62-吸附氢的性能. Mg可以稳定地结合在B6H62-上, 它可以吸附六个氢分子. 电荷转移所导致的Mg周围电场的增强和体系更大的偶极矩使 得MgB6H62-比MgB6H6具有更好的储氢性能, 储氢密度达到11.1 wt%, 氢分子的平均结合能在0.23 eV/H2至0.34 eV/H2之间. 结果表明可以通过控制金属-有机物体系的电荷态来增强电场, 进而改善其储氢性能. 关键词: 6H62-团簇')" href="#">MgB6H62-团簇 密度泛函理论(DFT) 储氢性能 电荷态  相似文献   

8.
本文采用基于密度泛函理论(DFT)的第一原理赝势平面波(PW-PP)方法,对氢分子在Mg2Ni(010)面的吸附与分解进行了研究,我们发现氢分子以Hor1的方式吸附在表面层Ni原子的顶位时吸附能最高,为0.6769eV,这表明氢分子最可能以Hor1的方式吸附在表面层Ni原子的顶位,此时氢分子跟表面的距离( )和氢分子的键长( )分别为1.6286Å和0.9174Å. 在分子吸附的基础上计算了氢分子沿着选取的反应路径分解时的反应势垒,发现要使氢分子分解需要0.2778eV的活化能,而氢分子分解时的吸附能为0.8390eV,分解后两个氢原子的距离为3.1712Å. 在分子吸附和分解吸附时氢原子跟正下方的Ni原子都有较强的相互作用,氢原子所得到的电子主要来自氢分子正下方的Ni原子.  相似文献   

9.
Considering the overlapping among atoms in the molecule and the not full transparency of the molecule by electron, we propose a new formulation of the additivity rule (AR). Here the new AR is employed to calculate the total cross sections (TCS) for electron scattering on hydrocarbon molecules C_2H_2, C_2H_4, C_2H_6, and C_3H_8 over an incident energy range of 10-2000eV. The results are compared with the experimental data and other available theoretical calculations. This gives good agreement.  相似文献   

10.
根据原子分子反应静力学与群论,确定了H2、D2和T2的基电子状态为1∑+g(D∞v),SnH、SnD和SnT的基电子状态为2∑+( C∞v).应用基函数SDD**和6-311G**,密度泛函B3P86方法,计算了氢同位素分子及其锡化物的结构、能量E、定容热容Cv和熵S.H2 (D2, T2) ,SnH(D , T)和SnH2(D2, T2)的基电子状态分别为1∑+g(D∞h ),2∑+(C∞v)和3B1(C2v).H2、D2和T2的离解能为4.591 8 eV,SnH(D, T)分子的离解能为2.714 7 eV,SnH2(D2, T2)分子的离解能为4.833 9 eV.用总能量中的电子和振动能量近似代表SnHn、SnDn和SnTn(n=1,2)分子处于固态时的能量,用总熵中的电子和振动熵近似代表SnH、 SnD和SnT分子处于固态时的熵,从而计算了锡与H2、D2和T2反应过程的△Hf°,△Sf°,△Gf°和平衡压力, 并导出他们与温度的函数关系.X  相似文献   

11.
祁鹏堂  陈宏善 《物理学报》2015,64(23):238102-238102
利用密度泛函理论研究了Li原子修饰的C24团簇的储氢性能. Li原子在C24团簇表面的最佳结合位是五元环. Li原子与C24团簇之间的作用强于Li原子之间的相互作用, 能阻止它们在团簇表面发生聚集. 当Li原子结合到C24表面时, 它们向C原子转移电子后带正电荷. 当氢分子接近这些Li原子时, 在电场作用下发生极化, 通过静电相互作用吸附在Li原子周围. 在Li修饰的C24复合物中, 每个Li原子能吸附两到三个氢分子, 平均吸附能处于0.08到0.13 eV/H2范围内. C24Li6能吸附12个氢分子, 储氢密度达到6.8 wt%.  相似文献   

12.
采用密度泛函理论(DFT)方法研究平面星形Li_6Si_6团簇的结构及其储氢性能.结果表明,氢分子能在平面星形Li_6Si_6团簇表面发生吸附,每个Li原子周围均可有效吸附三个氢分子,结构的稳定性及合适的吸氢条件表明平面星形Li_6Si_6团簇在常温常压条件下可以作为储氢媒介.  相似文献   

13.
朱玥  李永成  王福合 《物理学报》2016,65(5):56801-056801
本文利用基于密度泛函理论的第一性原理分别研究了MgH2(001)表面H原子扩散形成H2分子释放出去的可能路径及金属Li原子掺杂对其影响. 研究结果表明: 干净MgH2(001)表面第一层释放H原子形成H2分子有两种可能路径, 其释放能垒分别为2.29和2.50 eV; 当将Li原子替代Mg原子时, 两种H原子扩散释放路径的能垒分别降到了0.31和0.22 eV, 由此表明Li原子掺杂使MgH2(001)表面H原子扩散形成H2释放更加容易.  相似文献   

14.
偏二甲肼在氟化镁涂层表面的吸附与反应   总被引:1,自引:0,他引:1  
研究了偏二甲肼在氟化镁涂层表面的吸附和化学反应情况.首先用液相或气相偏二甲肼沾染氟化镁涂层表面,再将涂层置于真空环境足够长时间,然后通过对比沾染前、后涂层表面的红外吸收光谱、X射线光电子能谱和漫反射率,了解涂层表面的吸附状况和性能变化.实验表明,覆盖于氟化镁涂层表面的偏二甲肼液膜分子,在真空环境下充分脱附的时间约为2h,充分脱附后的涂层表面只有单层化学吸附存在,其质量密度约为27ng/cm2,实验后氟化镁涂层表面的漫反射率下降了10%~15%;在-10℃的偏二甲肼饱和蒸气中沾染10min后,氟化镁涂层表面的原子组成和漫反射率变化很小,红外吸收光谱也没有偏二甲肼特征峰出现.  相似文献   

15.
提出碱金属钠原子修饰笼形Si_6团簇的结构模型,采用密度泛函理论(DFT)研究钠原子修饰笼形Si_6团簇的结构及储氢性能.研究结果表明,氢分子与笼形Si_6团簇表面相互作用很弱,氢分子在其表面容易脱附.采用钠原子修饰笼形Si_6团簇后可有效避免氢分子的脱附,并且钠原子在笼形Si_6团簇的表面不发生团聚,有利于氢分子在其表面吸附和循环利用.研究发现在两个钠原子修饰笼形Si_6团簇的结构中,每个钠原子可以有效吸附六个氢分子.计算得到Na2Si_6团簇结构储氢的质量分数高达10.08 wt%,且氢分子的平均吸附能约为0.837 kcal/mol.可见,实现钠原子修饰笼形Si_6团簇结构在常温常压条件下储氢是有可能的.  相似文献   

16.
运用Gaussian 03程序包中的单双迭代三重激发耦合簇理论和相关一致五重基优化了AsH_2的基态结构,并在优化结构的基础上计算了它的离解能和振动频率.结果表明:AsH_2基态的平衡构型具有C_(2v)对称性,键长R_(As-H)=0,1508 nm,键角∠HAsH=91.2231°,离解能D_e(Has-H)=2.8795 eV,振动频率ν_1(α_1)=1013.3361 cm~(-1),ν_2(α_1)=2225.1347 cm~(-1),ν_3(α_1)=2233.7565 cm~(-1).这些结果与实验值较为相符.对H_2的基态使用优选出的cc-pV6Z基组、对AsH的基态使用优选出的cc-pV5Z基组进行平衡几何与谐振频率的计算并进行单点能扫描,且将扫描结果拟合成了Murrell-Sorbie函数.与实验数据及其他理论结果的比较表明,本文关于AsH(X~3∑~-)自由基光谱常数(D_0,D_e,R_e,ω_e,B_e,α_e和ω_eX_e)的计算结果达到了很高的精度并最为完整.采用多体项展式理论导出了AsH_2(C_(2v),X~2B_1)自由基的解析势能函数,其等值势能图准确再现了它的离解能和平衡结构特征.首次报导了AsH_2(C_(2v),X~2B_1)自由基对称伸缩振动等值势能图中存在的两个对称鞍点,对应于反应AsH+H→ABH_2,势垒高度约0.1512×4.184 kJ/mol.
Abstract:
The CCSD(T) theory in combination with the cc-pV5Z basis set is used to determine the equilibrium geometry, dissociation energy and vibrational frequencies of AsH_2 (C_(2v), X~2B_1) radical. By comparison, excellent agreement can be found between the present results and the experiments. The values obtained at present are of 0.1508 ran for the equilibrium bond length R_(As-H), 91.2231° for the bond angle ∠ HASH, 2. 8795 eV for the dissociation energy D_e (HAs-H) and 1013.3361 cm~(-1), 2225.1347 cm~(-1) and 2233.7565 cm~(-1) for the vibrational frequencies ν_1(α_1), ν_2(α_1) and ν_3(α_1), respectively. The equilibrium geometry,harmonic frequency and potential energy curve of the AsH(X~3∑~-) radical are calculated at the CCSD(T)/cc-pV5Z level of theory. The ab initio results are fitted to the Murrell-Sorbie function with the least-square method. The spectroscopic parameters are in excellent agreement with the experiments. The analytic potential energy function of the AsH_2 (C_(2v), X~2 B_1) radical is derived by using the many-body expansion theory. This function correctly describes the configuration and dissociation energy of the AsH_2 (C_(2v), X~2B_1) radical. Two symmetrical saddle points have been found at (0.160 nm,0.296 nm) and (0.296 nm,0.160 nm) ,respectively. And the barrier height is equal to 0.1512×4.184 kJ/mol.  相似文献   

17.
The formation mechanism for the regular octahedral structure of Li6 cluster is proposed. The curve of the total energy versus the separation R between any two neighboring nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of -44.736 89 a.u. at R = 5.07a0. When R approaches infinity, the total energy of six lithium atoms has the value of -44.568 17 a.u. So the binding energy of Li6 with respect to six lithium atoms is 0.1687 a.u. Therefore, the binding energy per atom for Li6 is 0.028 12 a.u., or 0.7637 eV, which is greater than the binding energy per atom of 0.453 eV for Li2 and the binding energy per atom of 0.494 eV for Li3 calculated in our previous work. This means that the Li6 cluster may be formed in a regular octahedral structure with a greater binding energy.  相似文献   

18.
利用第一性原理计算方法,研究合金效应对PtRun-1(n=2-14)和H2O-PtRun-1(n=2-14)体系的几何构型、稳定性及吸附水特性的影响.结果表明:铂原子替代钌原子的能量较低,容易与钌团簇形成合金,铂原子喜欢占据配位数较低位置.相对于纯钌团簇,合金效应很大程度上提高了水分子在PtRun团簇上的吸附能.考虑范德瓦尔斯力后,水分子在PtRu7上的吸附能增大,分解势垒降低,水分子可以在PtRu7上分解.铂钌合金更适合做分解水制取氢气的催化剂.  相似文献   

19.
Using density functional theory (DFT) in combination with nudged elastic band (NEB) method, the dissociative chemisorptions and diffusion processes of hydrogen on both pure and Fe-doped Mg(0 0 0 1) surfaces are studied. Firstly, the dissociation pathway of H2 and the relative barrier were investigated. The calculated dissociation barrier (1.08 eV) of hydrogen molecule on a pure Mg(0 0 0 1) surface is in good agreement with comparable experimental and theoretical studies. For the Fe-doped Mg(0 0 0 1) surface, the activated barrier decreases to 0.101 eV due to the strong interaction between the s orbital of H and the d orbital of Fe. Then, the diffusion processes of atomic hydrogen on pure and Fe-doped Mg(0 0 0 1) are presented. The obtained diffusion barrier to the first subsurface is 0.45 eV and 0.98 eV, respectively. Finally, Chou method was used to investigate the hydrogen sorption kinetic mechanism of pure MgH2 and Mg mixed with 5 at.% Fe atoms composites. The obtained activation energies are 0.87 ± 0.02 and 0.31 ± 0.01 eV for H2 dissociation on the pure surface and H atom diffusion in Fe-doped Mg surfaces, respectively. It suggests that the rate-controlling step is dissociation of H2 on the pure Mg surface while it is diffusion of H atom in the Fe-doped Mg surface. And both of fitting data are matching well with our calculation results.  相似文献   

20.
The interaction of H2 with clean, Ni and Nb doped Mg(0001) surface are investigated by first-principles calculations. Individual Ni and Nb atoms within the outermost surface can reduce the dissociation barrier of the hydrogen molecule. They, however, prefers to substitute for the Mg atoms within the second layer, leading to a weaker catalytic effect for the dissociation of H2, a bottleneck for the hydriding of MgH2. Interestingly, co-doping of Ni and Nb stabilizes Ni at the first layer, and results in a significant reduction of the dissociation barrier of H2 on the Mg surface, coupled with an increase of the diffusion barrier of H. Although codoped Ni and Nb shows no remarkable advantage over single Nb here, it implies that the catalytic effect could be optimized by co-doping of “modest” transition metals with balanced barriers for dissociation of H2 and diffusion of H on Mg surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号