首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
By using the molecular orbit theory, we give a new model potential acting on the excited electron within a molecule. The potential is the total interaction energy of this electron with all the nuclei and other electrons.We find that the introduction of a new model potential results in an extreme increase of the number of closed orbits as compared to the hydrogen atom. Making use of the molecular closed-orbit theory (MCOT) and the new model potential, we calculate the recurrence spectra of H2 molecules in parallel electric and magnetic fields for different quantum defects. The modulations in the spectra can be analysed in terms of the scattering of the excited electron on the molecular core. Our results are in good agreement with the quantum results.  相似文献   

2.
A complex optical model potential rewritten by the concept of bonded atom, which considers the overlap of electron clouds, is employed to calculate the total cross sections for electron scattering from several simple molecules (O_2, H_2O, H_2, O_3, CO and CO_2) consisting of C, H and O atoms in an incident energy range of 100-2000eV by the use of the additivity rule at Hartree-Fock level. In the study, the complex optical potential composed of static, exchange, correlation polarization plus absorption contributions firstly uses the bonded-atom concept. The quantitative molecular total cross section results are compared with experimental data and with the other calculations wherever available and good agreement is obtained. It is shown that the additivity rule along with the complex optical model potential rewritten by the concept of bonded atom can be used successfully to calculate the total cross section of electron-molecule scattering above 100eV, whereas the rule together with the complex optical model potential not rewritten by the concept of bonded atom is only successfully used above 300-500eV. So, the introduction of the bonded-atom concept in the complex optical potential can improve the accuracy of the total cross section calculations.  相似文献   

3.
To quantify the changes of the geometric shielding effect in a molecule as the incident electron energy varies, we present an empirical fraction, which represents the total cross section (TCS) contributions of shielded atoms in a molecule at different energies. Using this empirical fraction, a new formulation of the additivity rule is proposed. Using this new additivity rule, the TCSs for electron scattering by CO2, C2H2, C6H12 (cyclo-hexane) and CsH16 (cyclo-octane) are calculated in the range 50-5000 e V. Here the atomic cross sections are derived from the experimental TCS results of simple molecules (H2, O2, CO). The quantitative TCSs are compared with those obtained by experiments and other theories, and good agreement is attained over a wide energy range.  相似文献   

4.
李霞  任海振  马日  陈建新  杨宏  龚旗煌 《中国物理》2004,13(9):1564-1568
Femtosecond laser-induced dissociation and Coulomb explosion of polyatomic molecule C_2H_6 were systematically investigated using a time-of-flight mass spectrometer and a chirped pulse amplifier laser. With the laser intensity varying from 2.4×10^{15}W/cm^{2} to 1.2×10^{16}W/cm^2, strong molecular ions C_2H_n^+ (n=0-6) and atomic ions C^{m+} (m=1-3) signals were observed. The double-peak structure of atomic ions indicated the occurrence of Coulomb explosion. Compared with the nearly isotropic distribution of C^{+}, highly charged ions C^{m+} (m=2-3) exhibited a sharply anisotropic angular distribution, which was attributed to the geometric alignment.  相似文献   

5.
A complex optical model potential correlated by the conception of bonded atom, which considers the overlapping effect of electron clouds between the two atoms in a molecule, is firstly employed to calculate the total cross sections for electron scattering from the isoelectronic (Z = 14) molecules (C2H2, CO, HCN, and N2) at 100-5000 eV using the additivity rule at the Hartree-Fock level. The difference between the bonded atom and the free one is that the overlapping effect of electron clouds of bonded atoms in molecules is considered. The quantitative molecular total cross section results are compared with the experimental data and with the other calculations wherever available and good agreement is obtained above 100 eV. It is shown that the additivity rule along with the complex optical model potential considering the overlapping effect of electron clouds can give the results better than that uncorrelated by it. The correlating calculations are much closer to the experiments than the spherical-complex-optical-potential results in the lower energy region [Phys. Rev. A 45 (1992) 202]. Therefore,considering the overlapping effect of electron clouds in the complex optical potential could be helpful for the better accuracy of the total cross section calculations of electron scattering from molecules.  相似文献   

6.
Density functional Theory (DFT) (B3p86) of Gaussian03 has been used to optimize the structure of Os2 molecule. The result shows that the ground state for Os2 molecule is 9-multiple state and its electronic configuration is ^9∑^+g, which shows spin polarization effect of Os2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, the fact that the ground state for Os2 molecule is a 9-multiple state is indicative of spin polarization effect of Os2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of Os2 molecule is minimized. It can be concluded that the effect of parallel spin of Os2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state ^9∑^+g and other states of Os2 molecule are derived. Dissociation energy De for the ground state of Os2 molecule is 3.3971eV, equilibrium bond length Re is 0.2403nm, vibration frequency ωe is 235.32cm^-1. Its force constants f2, f3, and f4 are 3.1032×10^2aJ·nm^-2, -14.3425×10^3aJ·nm^-3 and 50.5792×10^4aJ·nm^-4 respectively. The other spectroscopic data for the ground state of Os2 molecule ωexe, Be and ae are 0.4277cm^- 1, 0.0307cm^- 1 and 0.6491 × 10^-4cm^-1 respectively.  相似文献   

7.
Heavy electron-doped FeSe-derived materials have attracted attention due to their uncommon electronic structures with only ‘electron pockets', and they are different from other iron-based superconductors. Here, we report the crystal structures, superconductivities and normal state properties of two new Li-doped FeSe-based materials, i.e.,Li0.15(C_3H_(10)N_2)_(0.32) FeSe(P-4) and Li_x(C_3H_(10)N_2)_(0.32) FeSe(P4/nmm, 0.25 x 0.4) with superconducting transition temperatures ranging from 40 K to 46 K. The determined crystal structures reveal a coupling between Li concentration and the orientation of 1,3-diaminopropane molecules within the largely expanded FeSe layers. Superconducting fluctuations appear in the resistivity of the two superconductors and are fitted in terms of the quasi two-dimensional(2 D) Lawrence–Doniach model. The existence of a crossing point and scaling behavior in the T-dependence of diamagnetic response also suggests that the two superconductors belong to the quasi-2 D system. Interestingly, with the increase of temperature, a sign of Hall coefficient(R_H) reversing from negative to positive is observed at ~185 K in both phases, suggesting that‘hole pockets' emerge in these electron-doped FeSe materials. First principle calculations indicate that the increase in FeSe layer distance will lift up a ‘hole band' associated with d_(x~2-y~2) character and increase the hole carriers. Our findings suggest that the increase in two dimensionalities may lead to the sign-reversal Hall resistivity in Li_x(C_3H_(10)N_2)_(0.32) FeSe at high temperature.  相似文献   

8.
阎世英  朱正和 《中国物理》2006,15(7):1517-1521
This paper uses the density functional theory (DFT)(B3p86) of Gaussian03 to optimize the structure of Fe2 molecule. The result shows that the ground state for Fe2 molecule is a 9-multiple state, which shows spin polarization effect of Fe2 molecule of transition metal elements for the first time. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions with higher energy states. So, that the ground state for Fe2 molecule is a 9-multiple state is indicative of the spin polarization effect of Fe2 molecule of transition metal elements. That is, there exist 8 parallel spin electrons. The non-conjugated electron is greatest in number. These electrons occupy different spacious tracks, so that the energy of the Fe2 molecule is minimized. It can be concluded that the effect of parallel spin of the Fe2 molecule is laFger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell Sorbie potential functions with the parameters for the ground state and other states of Fe2 molecule are derived. Dissociation energy De for the ground state of Fe2 molecule is 2.8586ev, equilibrium bond length Re is 0.2124nm, vibration frequency we is 336.38 cm^-1. Its force constants f2, f3, and f4 are 1.8615aJ.nm^-2, -8.6704aJ.nm^-3, 29.1676aj.nm^-4 respectively. The other spectroscopic data for the ground state of Fe2 molecule weXe, Be, αe are 1.5461 cm^-1, 0.1339cm^-1, 7.3428× 10^-4 cm^-1 respectively.  相似文献   

9.
Acoustic compliance was measured and calculated on tympanograms taken from 171 otologicallynormal ears with the MEFM-Apparatus,the test frequency being 300 Hz.The averaged maximumcompliance was found to be 1.16 ml at zero ear-canal pressure(C_0),and 1.29 ml at the point wherepressure in the ear canal equaled that in the tympanic cavity(C_e).The range of relative compliancechange in the tympanogram was 0.65 ml in average.For the majority(96.1%)of the tested ears,pressure in the tympanic cavity did not exceed ±50 mm H_2O.A new term of compliance variation(CR=ΔC_(Δp)/ΔC_(200))is introduced as a measurable parameter to express the gradient of compliancechange.It is proposed to take ±50 and ±100 mm H_2O for Δp in routine compliance ratio measure-ment and comparison.Normal CR is approximately 0.5 when Δp is ±50 mm H_2O.  相似文献   

10.
11.
Making use of the molecular closed-orbit theory and a new model potential for the Rydberg molecule, we have calculated the recurrence spectra of He^2+ molecular ion in a magnetic field for different quantum defects. The Fourier transform spectra of He^2+ molecular ion may be used to perform a direct comparison between peaks in the spectra and the scaled action values of closed orbits of the excited electron in external fields. We find that the spectral modulations can be analysed in terms of the scattering of the excited electron on the molecular core. Unlike the case of the Rydberg atom where the elastic scattering is predominant, modulations produced by inelastic scattering are also vital to the photoabsorption spectrum of the Rydberg molecule. Our results are in good agreement with the quantum results, which suggests that our method is correct.  相似文献   

12.
Taking into consideration the changes of the geometric shielding effect in a molecule as the energy of incident electrons varies, this paper presents an empirical fraction, which depends on the energy of incident electrons, the target's molecular dimension and the atomic and electronic numbers in the molecule. Using this empirical fraction, it proposes a new formulation of the additivity rule. Employing the new additivity rule, it calculates the total cross sections of electron scattering by C2H4, C6H6, C6H14 and C8H18 over the energy range from 50 to 5000eV. In order to exclude the calculation deviations caused by solving the radial Schrodinger equation of electron scattering by atoms, here the atomic cross sections are derived from the experimental total cross section results of simple molecules (H2, O2, CO) via the inversion algorithm. The quantitative total cross sections are compared with those obtained by experiments and other theories, and good agreement is obtained over a wide energy range, even at energy of several tens of eV.  相似文献   

13.
By using open-ended armchair (6, 6) single-wall carbon nanotubes as electrodes, we investigate the electron transport properties of an all-carbon molecular junction based on the C82 molecule. We find the most stable system among different isomers by performing structural optimization calculations of the Cs2 isomers and the C82 extended molecules. The calculated results show that the C82 -C2 (3) isomer and the C82 extended molecule with C82-C2 isomer are most stable. For the all-carbon hybrid system consisting of C82-C2 extended molecules, it is shown that the Landauer conductance can be tuned over several orders of magnitude both by changing the distance between two electrodes and by changing the orientation of the C82 molecule or rotating one of the tubes around the symmetry axis of the system at a fixed distance. Also, we find the most stable distance between two electrodes from the total energy curve. This fact could make this all-carbon molecular system a possible candidate for a nanoelectronic switch. Moreover, we interpret the conductance mechanism for such a molecular device.  相似文献   

14.
A complex optical model potential modified by incorporating the concept of bonded atom, which takes into consideration the overlapping effect of electron clouds between atoms in a molecule, is firstly employed to calculate the absolute differential, elastic integrated and moment transfer cross sections for electron scattering by OCS over the incident energy range from 200 to 1000\,eV using the additivity rule model at Hartree--Fock level. The calculated results are compared with those obtained by experiment and other theories wherever available, and good agreement is obtained over a wide energy range. It is shown that the additivity rule model together with the modified potential is completely suitable for calculating the absolute differential, elastic integrated and moment transfer cross sections of electron scattering by molecules such as OCS.  相似文献   

15.
We investigate the spectral redshift of high-order harmonics of the H_2~+(D_2~+) molecule by numerically solving the non-Born–Oppenheimer time-dependent Schr ¨odinger equation(TDSE). The results show that the spectral redshift of highorder harmonics can be observed by adding a weak pulse in the falling part of the trapezoidal laser pulses. Comparing with the H_2~+ molecule, the shift of high-order harmonic generation(HHG) spectrum for the D_2~+ molecule is more obvious.We employ the spatial distribution in HHG and time-frequency analysis to illustrate the physical mechanism of the spectral redshift of high-order harmonics.  相似文献   

16.
Spin polarization effect for Mn2 molecule   总被引:2,自引:0,他引:2       下载免费PDF全文
阎世英  徐国亮 《中国物理》2007,16(3):686-691
The density functional theory method (DFT) (b3p86) of Gaussian 03 has been used to optimize the structure of the Mn2 molecule. The result shows that the ground state of the Mn2 molecule is an 11-multiple state, indicating a spin polarization effect in the Mn2 molecule, a transition metal element molecule. Meanwhile, we have not found any spin pollution because the wavefunction of the ground state does not mingle with wavefunctions of higher-energy states. So the ground state for Mn2 molecule being of an 11-multiple state is the indicative of spin polarization effect of the Mn2 molecule among those in the transition metal elements: that is, there are 10 parallel spin electrons in a Mn2 molecule. The number of non-conjugated electrons is the greatest. These electrons occupy different spacious orbitals so that the energy of the Mn2 molecule is minimized. It can be concluded that the effect of parallel spin in the Mn2 molecule is larger than the effect of the conjugated molecule, which is obviously related to the effect of electron d delocalization. In addition, the Murrell-Sorbie potential functions with the parameters for the ground state and other states of the Mn2 molecule are derived. The dissociation energy De for the ground state of the Mn2 molecule is 1.4477 eV, equilibrium bond length Re is 0.2506 nm, vibration frequency ωe is 211.51 cm^-1. Its force constants f2, f3, and f4 are 0.7240 aJ·nm-2, -3.35574 aJ·nm^-3, 11.4813 aJ·nm^-4 respectively. The other spectroscopic data for the ground state of the Mn2 molecule ωeχe, Be, αe are 1.5301 cm^-1, 0.0978 cm^-1, 7.7825×10^-4 cm^-1 respectively.  相似文献   

17.
Considering the real experimental process of e-molecule scattering a new empirical formula has been developed to calculate the total cross sections (TOSs) for electron scattering on polyatomic molecules (CH4, C2H2, CH3OH and CH3F). The present results are compared with other available theoretical results and experimental data. The new formula incorporates an energy factor f(E) to represent the elastic and inelastic changing process during experiments. It depends on no adjustable parameters and has also extended the validity of the empirical approaches to lower energy range further.  相似文献   

18.
The H2(v,j) Ni(100) collision system has been studied to understand the effects of the surface sites and initial rovibrational states of the molecule on molecule-surface interactions, by a quasiclassical molecular dynamic simulation method. Dissociative adsorption of an H2 molecule on the rigid Ni(100) surface is investigated at topologically different three sites of the surface. Interaction between the molecule and Ni surface was described by a London-Eyring-Polani-Sato (LEPS) potential. Dissociative chemisorption probabilities of the H2(v, j) molecule on various sites of the surface are presented as a function of the translation energies between 0.001-1.0eV. The probabilities obtained at each collision site have unique behaviour. At lower collision energies, indirect processes enhance the reactivity, effects of the rotational excitations and impact sites on the reactivity are more pronounced. The results are compared with the available studies. The physical mechanisms underlying the results and quantum effects are discussed.  相似文献   

19.
The multi-photon ionization spectrum of NO in the wavelength region of 575-680 nm is obtained with an optical parameter generator and amplifier (OPG/OPA) pumped by a picosecond Nd:YAG laser as radiation source. The banded structure of the spectrum indicates that NO molecule is ionized in resonant manner and the peaks of the spectrum are assigned to the transition of NO molecule from the ground electronic state to A2∑(v' = 0,1,2,3), E2∑(v' = 0,1,2), F2Δ(v' = 0,1,2,3) and H2∑(v' = 0,1,2) intermediate resonant ones. The molecule constants about NO (A2∑, E2∑, F2Δ, H2∑) states are calculated from the center wavelength of the spectrum. It is also found that owing to the special electron configuration of NO, this molecule does not follow the normal transition selection rule of the diatomic molecule during the multi-photon process.  相似文献   

20.
Differential cross sections for the elastic scattering of electrons by oxygen molecule are calculated for selected impact energies 7eV and 9eV. The results are compared with other theoretical results and experimental data.The present results are obtained by the momentum space optical potential method. This method take the polarization of target states into account, which is very important for the scattering problem, particularly at low energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号