首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
张杨  张建华  文玉华  朱梓忠 《物理学报》2008,57(11):7094-7099
采用分子静力学方法结合量子修正的 Sutton-Chen多体势研究了含圆孔的纳米薄膜在单向加载过程中的力学行为,并采用共近邻分析方法研究了薄膜的微结构演化过程.模拟结果表明:孔洞的引入显著地降低了纳米薄膜的杨氏模量和屈服应力;在拉伸过程中,孔洞的形状随着应变的增加逐渐由圆形变为椭圆形,最终孔洞闭合;纳米薄膜在进入塑性变形阶段后,薄膜内部出现原子的堆跺层错,这种层错结构的出现是肖克莱不全位错在薄膜内部沿着{111}面的[112]方向运动的结果. 关键词: 纳米薄膜 力学性质 位错 分子静力学  相似文献   

2.
高熵合金具有传统合金无法比拟的高强度、高硬度和高耐磨耐腐蚀性,具有广阔的应用前景。为研究AlCrFeCuNi高熵合金(High entropy alloy,HEA)在轴向载荷作用下的力学性能,采用分子动力学方法,模拟高熵合金的实验制备过程并建立原子模型,研究温度和Al的含量对AlCrFeCuNi高熵合金力学性能的影响,从材料学角度分析了变形过程及其具有高塑性的原因。模拟结果表明,AlCrFeCuNi高熵合金在拉伸载荷作用下依次经历弹性、屈服、塑性3个变形阶段。在屈服阶段,开始出现孪晶和层错,孪晶和层错的产生和生长是合金产生不均匀塑性变形的主要原因之一。高熵合金的杨氏模量和屈服应力随着Al含量的增加近似线性降低,同时具有很强的温度效应,温度越低,Al含量越小,其杨氏模量和屈服应力的下降幅度越大。  相似文献   

3.
Bin Li 《哲学杂志》2020,100(18):2291-2319
ABSTRACT

Void nucleation, growth and coalescence have been identified as the leading cause of ductile damage in metallic materials. To understand the underlying deformation and damage mechanisms, extensive theoretical, experimental and simulation efforts have been attempted on spherically voided metals. In this work, molecular dynamics simulations are performed to analyze the uniaxial straining deformation behaviours of both single-crystal and nanotwinned copper materials embedded with a preexisting spheroidal void. The coupling effects among twin boundary, spheroidal void aspect ratio and orientation on unidirectional elastoplastic behaviours are systematically examined. The dislocation-induced plastic deformation mechanism is also examined and compared with the one due to a perfectly spherical cavity. Simulation results show that elastic modulus increases with both spheroidal void aspect ratio and orientation. So do the yield stress, the first peak stress and the plasticity index. Another peak stress exists for most cases, except for a prolate void embedded in nanotwinned specimens. The slope between peak stresses decreases with both the spheroidal aspect ratio and orientation. The incorporation of a twin boundary results in lower elastic modulus, higher yield strength and smaller plasticity index. For an oblate void, the twin boundary gives rise to more severe strain softening behaviour. The dislocation extraction algorithm illustrates that the continuous nucleation, propagation and reaction of dislocations emanated from both the void front and twin boundary are responsible for the ductile damage of spheroidally voided crystals. The lower dislocation densities found in nanotwinned specimens indicate the desired suppression effects of twin boundary on dislocation activities.  相似文献   

4.
本文采用分子动力学方法研究了FeCoCrCuNi高熵合金裂纹及孔洞模型结构在不同轴向拉伸应变速率下的力学与微观结构演化机理. 结果表明:应变速率越高FeCoCrCuNi裂纹结构对应更高的过冲应变和过冲应力,其主要原因是高拉伸速率会导致高强度的BCC结构及孪晶结构的生成,而BCC结构及孪晶结构的产生进而会抑制应力的下降,通过应力-应变曲线,可知FeCoCrCuNi裂纹模型在轴向应力作用下表现为塑性形变. 对于不同尺寸的孔洞FeCoCrCuNi裂纹模型的应力模拟与结构分析,可以得出:孔洞尺寸越大, FeCoCrCuNi裂纹结构对应的过冲应变和过冲应力越小,其主要原因是大尺寸的孔洞造成孔洞之间产生裂纹的,进而会影响这个材料的屈服应变和屈服强度.  相似文献   

5.
Yanqiu Zhang 《哲学杂志》2013,93(30):2772-2794
Abstract

Molecular dynamics simulations were conducted to elucidate dislocation mechanisms of the void growth and coalescence in single crystal and nanotwinned nickels subjected to uniaxial tension. The simulation results reveal that twin boundary is capable of decreasing the critical stress, suppressing the emission of dislocations and reducing the overall stiffness of the crystal. A size-scale dependence of critical stress is definitely illustrated through stress–strain response, where the larger void size leads to the lower critical stress and strain. It is the successive emissions of leading partials and the subsequent trailing partials that cause the atoms on the void surfaces to escape from the void surfaces continually, and consequently the voids grow to be larger and larger with increasing strain. The voids in the nanotwinned nickel coalesce earlier than those in the single crystal nickel even though the initiation of dislocations in the former is later than that in the latter. Void fraction remains a constant during elastic deformation, while it presents a linear increase with increasing strain during plastic deformation. Evolution of void fraction during void growth and coalescence is independent on void size.  相似文献   

6.
Influences of different factors on the elastic-plastic properties of nanocrystalline copper containing a void are studied by the molecular dynamics method. The radius of the circular plate is 30a, while the radius of the void is 5a (a is 0.3615 nm for the lattice constant of bulk copper). The effects of crystal orientation, the void ellipticity, loading rate, and temperature of nanocrystalline copper are discussed. The elastic-plastic deformation of nanocrystalline under inner pressure is investigated in this research. The plastic zone is determined according to the dislocation nucleation from the edge of the void. The simulation results show that there are different deformation mechanisms under different crystal orientations, and the nanocrystalline copper can be strengthened by changing the void shape, decreasing the loading rate, and lowering the temperature. And the plastic zone initiation and growth are further explained. The change of different conditions has a great influence on plastic zone.  相似文献   

7.
冲击加载下孔洞贯通的微观机理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用分子动力学方法计算模拟了沿〈100〉晶向冲击加载下单晶铜中双孔洞的贯通过程.发现孔洞周围发射剪切型位错环是孔洞塌缩和增长的原因.在拉伸阶段,孔洞首先分别独立增长,随后其周围塑性变形区开始交叠和相互作用,最后两个孔洞开始直接贯通.这种贯通模式和实验对延性材料中孔洞贯通过程的显微观察结果一致.对四种不同θ值(θ为两个孔洞中心连线与冲击加载方向之间的夹角)的模型分别进行了计算模拟,发现在相同的冲击加载强度下,θ=0°和θ=30°的孔洞之间没有相互贯通; 关键词: 纳米孔洞 分子动力学 冲击加载 贯通  相似文献   

8.
邵宇飞  王绍青 《物理学报》2010,59(10):7258-7265
通过准连续介质方法模拟了纳米多晶体Ni中裂纹的扩展过程.模拟结果显示:裂纹尖端的应力场可以导致晶界分解、层错和变形孪晶的形成等塑性形变,在距离裂纹尖端越远的位置,变形孪晶越少,在裂纹尖端附近相同距离处,层错要远多于变形孪晶.这反映了局部应力的变化以及广义平面层错能对变形孪晶的影响.计算了裂纹尖端附近区域原子级局部静水应力的分布.计算结果表明:裂纹前端晶界处容易产生细微空洞,这些空洞附近为张应力集中区,并可能促使裂纹沿着晶界扩展.模拟结果定性地反映了纳米多晶体Ni中的裂纹扩展过程,并与相关实验结果符合得很好  相似文献   

9.
《Physics letters. A》2020,384(22):126516
Molecular dynamics simulations are performed to study mechanical characteristics and homogeneous plastic inception of CoCrCuFeNi high-entropy alloy at various temperatures under uniaxial tension. It is found that the elastic modulus and ultimate tensile strength increase with temperature decreasing. A notable softening effect is observed at the elastic deformation stage caused by the decrease of the interatomic force gradient. Extrinsic stacking faults and deformation twins are extensively observed, which are formed via intrinsic stacking faults overlap.  相似文献   

10.
采用LS-DYNA瞬态动力学有限元程序,对平板撞击加载下含初始杂质的纯铝样品中微孔洞的成核与长大进行了数值模拟。结果表明:微孔洞首先在杂质与基体的边界处成核,随后在局部严重塑性变形驱动下快速线性增长;微孔洞半径的增长速率与冲击加载强度两者之间近似成线性关系;材料屈服强度和初始杂质的大小对微孔洞相对的增长速率有明显的影响;当微孔洞长大阈值取屈服强度的3.5倍时,数值仿真结果与理论分析结果基本一致,这有助于进一步认识孔洞长大的动力学行为。  相似文献   

11.
Extensive atomistic simulations of the thermal stretching of defective nanowires (NWs) were performed using the embedded-atom molecular dynamics modeling approach. The nucleation and propagation of dislocations are described via quantitative dislocation-based analyses. The investigation focuses on the coupled effects of various vacancy cluster (VC) defects, operating temperature, and wire cross-sectional area on the mechanical properties and plastic deformations of defective NWs. With increasing internal stress of a stretched wire, a rapidly moving dislocation loop that transferred atoms to fill up the original vacancy cluster before the wire yielded was found (i.e. it carried the vacancies away from the inside of the wire and formed a notch at the wire edge). The heterogeneous nucleation of dislocations from the notch site propagated along the {111}〈112〉 partial dislocations and formed stacking faults or perfect dislocations on the {111} activated planes. Simulation results show a decreasing yield strength with increasing VC size for a given wire sectional area and temperature. Quasi-linear decreasing Young’s moduli were observed with increasing operation temperature. For a given operation temperature, NW Young’s modulus increased with increasing NW size. Two typical deformation regimes under various operation temperatures were found: (i) a high-temperature-induced pre-melting phenomenon and a thermal softening effect caused low-stress plastic flow and rapid pillar-necking deformation, and (ii) step-wise glides, slip bands, and cross-slips proceeded along the activated glide planes in the low-temperature hard-brittle structure. These two regimes were thoroughly characterized via the evolutions of microscopic dislocations and the changes of true stress. For operation at high temperatures, the ultra-thin 1/5-type pentagonal ring chains exhibit a relatively robust structure, which can potentially be used as building blocks and components for high-temperature nanoelectromechanical systems (NEMS) devices in the future.  相似文献   

12.
α-Fe裂纹的分子动力学研究   总被引:4,自引:0,他引:4       下载免费PDF全文
曹莉霞  王崇愚 《物理学报》2007,56(1):413-422
通过分子动力学方法,模拟了α-Fe裂纹的单轴拉伸实验中的形变过程.研究了不同晶体取向裂纹的形变特点和断裂机理,观察到各种形变现象,如位错形核和发射,位错运动,堆垛层错或孪晶的形成,纳米空洞的形成与连接等.计算结果表明,裂纹扩展是塑性过程和弹性过程相结合的过程,其中塑性过程表现为由裂尖发射的位错导致的原子切变行为,而弹性过程的发生则是由无位错区中的原子断键所导致.同时还研究了α-Fe裂纹的形变特点和断裂机理与温度场和应力场的依赖关系.  相似文献   

13.
马文  祝文军  陈开果  经福谦 《物理学报》2011,60(1):16107-016107
用分子动力学方法研究了纳米多晶铝在冲击加载下的冲击波阵面结构及塑性变形机理.模拟研究结果表明:在弹性先驱波之后,是晶界间滑移和变形主导了前期的塑性变形机理;然后是不全位错在界面上成核和向晶粒内传播,然后在晶粒内形成堆垛层错、孪晶和全位错的过程主导了后期的塑性变形机理.冲击波阵面扫过之后留下的结构特征是堆垛层错和孪晶留在晶粒内,大部分全位错则湮灭于对面晶界.这个由两阶段塑性变形过程导致的时序性塑性波阵面结构是过去未见报道过的. 关键词: 晶界 塑性变形 冲击波阵面 分子动力学  相似文献   

14.
Pre-existing defects can alter mechanical behavior of materials significantly under applied load. In current study molecular dynamics (MD) simulations are performed to reveal pre-existing void effect on nanoimprint of single crystal Al thin films, such as deformation mechanism and spring back phenomenon. Current simulation results show void acts as strong barrier to dislocation motion, although plastic deformation is dominantly controlled by dislocation activities. It indicates the void volume fraction has strong influence on nanoimprint: the larger the void volume fraction, the smaller the maximum force required for initial dislocation nucleation, and the stronger the interaction between extended dislocation and void. It also demonstrates that there is a critical void volume fraction for minimum spring back, which is resulted from competition between two roles affecting dislocation annihilation.  相似文献   

15.
Stacking faults in 4H-SiC crystals introduced upon plastic deformation at 550°C are studied using the electron-beam-induced current (EBIC) method. The types of stacking faults are determined by measuring the cathodoluminescence spectra. The stacking faults are shown to give a bright contrast in the EBIC mode. The nature of such contrast is discussed. The possibility of increasing the efficiency of semiconductor detectors based on structures with stacking faults equivalent to thin 3C-SiC layers is demonstrated.  相似文献   

16.
 用分子动力学方法计算模拟了沿〈111〉晶向冲击加载过程中,单晶铜中纳米孔洞(直径约1.3 nm)的演化及其周围区域发生塑性变形的过程。模拟结果表明,在沿〈111〉晶向冲击加载后,在面心立方(fcc)结构中的4族{111}晶面中有3族发生了滑移。伴随孔洞的增长,在所激活的3族{111}晶面上,观察到位错在孔洞表面附近区域成核,然后向外滑移,其中在剪切应力最大的〈112〉方向上,其位错速度超过横波声速,其它〈112〉方向的位错速度低于横波声速。模拟得到的位错阻尼系数范围与实验值基本符合。由于孔洞周围产生的滑移在空间比较对称,孔洞增长形貌接近球形。在恒定的冲击强度下,孔洞半径增长速率近似保持恒定,其速率随着冲击强度的增加而增大。  相似文献   

17.
杨素丽  符师桦  蔡玉龙  张迪  张青川 《物理学报》2017,66(8):86201-086201
利用数字图像相关法研究了常温与恒定应变率(5.00×10~(-3)s~(-1))下Mg含量(质量分数)分别为2.30%,4.57%,6.10%及6.91%四种Al-Mg合金Portevin-Le Chatelier(PLC)效应的宏观变形行为.实验发现,Mg含量的增加导致强化效果的增强;低Mg含量(2.30%)合金中锯齿跌落幅值基本保持不变,而在高Mg含量(4.57%,6.10%,6.91%)合金中随应变增加而增加.锯齿跌落幅值随Mg含量增加而逐渐增大,在高Mg含量合金中趋于饱和.宏观局域变形带的观察结果表明PLC带宽不随Mg含量或者应变改变而变化,带内变形量随着Mg含量或者应变的增加而逐渐增大.此外,在低Mg含量合金的加载曲线后段(应变约为0.3时)观测到了特殊的周期性的衰减锯齿,相应的时域PLC带演化表明加载曲线的周期性转变大锯齿对应着空间上PLC带的转向,幅度逐渐减小的振荡对应着PLC带的传播,且在转向前后PLC带均向上连续传播.  相似文献   

18.
Recent interest in the study of stacking faults and non-basal slip in Mg alloys is partly based on the argument that these phenomena positively influence mechanical behaviour. Inspection of the published literature, however, reveals that there is a lack of fundamental information on the mechanisms that govern the formation of stacking faults, especially I1-type stacking faults (I1 faults). Moreover, controversial and sometimes contradictory mechanisms have been proposed concerning the interactions between stacking faults and dislocations. Therefore, we describe a fundamental transmission electron microscope investigation on Mg 2.5 at. % Y (Mg–2.5Y) processed via hot isostatic pressing (HIP) and extrusion at 623 K. In the as-HIPed Mg–2.5Y, many 〈c〉 and 〈a〉 dislocations, together with some 〈c + a〉 dislocations were documented, but no stacking faults were observed. In contrast, in the as-extruded Mg–2.5Y, a relatively high density of stacking faults and some non-basal dislocations were documented. Specifically, there were three different cases for the configurations of observed stacking faults. Case (I): pure I2 faults; Case (II): mixture of I1 faults and non-basal dislocations having 〈c〉 component, together with basal 〈a〉 dislocations; Case (III): mixture of predominant I2 faults and rare I1 faults, together with jog-like dislocation configuration. By comparing the differences in extended defect configurations, we propose three distinct stacking fault formation mechanisms for each case in the context of slip activity and point defect generation during extrusion. Furthermore, we discuss the role of stacking faults on deformation mechanisms in the context of dynamic interactions between stacking faults and non-basal slip.  相似文献   

19.
We use the molecular dynamics code, large-scale atomic/molecular massively parallel simulator (LAMMPS), to simulate high strain rate triaxial deformation of crystal copper to understand void nucleation and growth (NAG) within the framework of an experimentally fitted macroscopic NAG model for polycrystals (also known as DFRACT model). It is seen that void NAG at the atomistic scales for crystal copper (Cu) has the same qualitative behaviour as the DFRACT model, albeit with a different set of parameters. The effect of material temperature on the nucleation and growth of voids is studied. As the temperature increases, there is a steady decrease in the void NAG thresholds and close to the melting point of Cu, a double-dip in the pressure–time profile is observed. Analysis of this double-dip shows disappearance of the long-range order due to the creation of stacking faults and the system no longer has a face centred cubic (fcc) structure. Molecular dynamics simulation of shock in crystal Cu at strain rates high enough to cause spallation of crystal Cu are then carried out to validate the void NAG parameters. We show that the pre-history of the material affects the void nucleation threshold of the material. We also simulate high-strain-rate triaxial deformation of crystal Cu with defects and obtain void NAG parameters. The parameters are then used in a macroscale hydrodynamic simulation to obtain spallation threshold of realistic crystal Cu. It is seen that our results match experimental results within the limit of 20% error.  相似文献   

20.
In this study, molecular dynamics simulations were performed to elucidate the effects of stacking fault energy (SFE) on the physical interactions between an edge dislocation and a spherical void in the crystal structure of face-centred cubic metals at various temperatures and for different void sizes. Four different types of interaction morphologies were observed, in which (1) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the trailing partial; (2) two partial dislocations detached from the void separately, and the maximum stress corresponded to the detachment of the leading partial; (3) the partial dislocations detached from the void almost simultaneously without jog formation; and (4) the partial dislocations detached from the void almost simultaneously with jog formation. With an increase in void size or SFE, the interaction morphology changed in the above-mentioned order. It was observed that the magnitude of the critical resolved shear stress (CRSS) and its dependence on the SFE were determined by these interaction morphologies. The value of the CRSS in the case of interaction morphology (1) is almost equal to an analytical one based on the linear elasticity by employing the Burgers vector of a single partial dislocation. The maximum value of the CRSS is also obtained by the analytical model with the Burgers vector of the two partial dislocations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号