首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
H. Ohnishi  E. Inami  J. Kanasaki 《Surface science》2011,605(15-16):1497-1502
Structural changes of graphite surfaces induced by femtosecond (fs) laser excitation at a fluence regime above 75 mJ/cm2 are reported. Direct imagings of excited surfaces by means of scanning tunneling microscopy have revealed that fs-excitations induce nanometer-scaled craters, together with sp3-type interlayer-bonded domains. The nano-craters are characterized by atomically-flat bottom and two atomic-steps in depth, indicating the exfoliation of fragmentary intact-sheets of double-layer of graphite. The theoretical simulation has shown that the required energy for the double-layer ablation is much lowered by the help of interlayer-bond formation, compared to the sequential removal of individual graphene layers. Based on the experimental and theoretical results, the exfoliation of double graphite layers, that is a novel mode of laser-ablation observed first, indicates clearly that the formation of strong interlayer bonds between the two atomic layers is a crucial step in the ablation process.  相似文献   

2.
In this work, we developed a novel approach for few-layer graphene by employing Li+/Na+ co-intercalated exfoliation assisted by ultrasound method. The experiments were conducted under the ultrasonic power of 300 W and the frequency of 40 kHz without the participation of any organic solvent. The effect of Li+/Na+ proportion on the exfoliation of graphite was intensively investigated. The structure and morphology of the as-exfoliated graphene nanosheets (UGN) was determined by a series of characterizations. The results showed that the thicknesses of the as-exfoliated graphene nanosheets were about 2.38–2.56 nm (about 7–8 layers) at the optimal Li+/Na+ ratio. The potential application of the as-exfoliated graphene nanosheets as additive in grease was evaluated by four-ball friction tester. The results demonstrated that the antifriction and antiwear performances of the grease with 0.06 wt% graphene were significantly improved by 21.35% and 30.32% relative to pure grease, respectively. The friction mechanism was proposed by detecting the worn surfaces.  相似文献   

3.
Highly oriented pyrolytic graphite (HOPG) was scribed by pulsed laser beam to produce square patterns. Patterning of HOPG surface facilitates the detachment of graphene layers during contact printing. Direct HOPG-to-substrate and glue-assisted stamp printing of a few-layers graphene was compared. Printed graphene sheets were visualized by optical and scanning electron microscopy. The number of graphene layers was measured by atomic force microscopy. Glue-assisted stamp printing allows printing relatively large graphene sheets (40×40 μm) onto a silicon wafer. The presented method is easier to implement and is more flexible than the majority of existing ways of placing graphene sheets onto a substrate.  相似文献   

4.
A density functional theory (DFT) study of graphene synthesis from graphite oxidation and exfoliation is presented. The calculated DFT results for O adsorption predict CO as a most stable bond on the graphene oxide (GO) sheet. The obtained exfoliation energy for the graphene and the GO are 143 and ∼70 mJ/m2 that verify easier exfoliation of the graphite oxide compared with the graphite. Furthermore, the DFT results show that for decreasing the exfoliation energy of the GO at least two layers of the graphite should be oxidized during the oxidation process.  相似文献   

5.
Sotor J  Sobon G  Abramski KM 《Optics letters》2012,37(11):2166-2168
All-polarization-maintaining, self-starting Erbium-doped fiber laser based on graphene-saturable absorber is presented. Scalar soliton pulses with 570 fs duration and 114.1 MHz repetition rate were achieved at a 1557 nm center wavelength and with 6 nm bandwidth. The graphene-saturable absorber was formed by mechanical exfoliation of pure graphite. The laser was environmentally stable and could operate for long periods of time with linearly polarized output and degree of polarization at the level of 98%.  相似文献   

6.
Erbium-doped fibre laser mode-locked by a graphene saturable absorber is presented. Pulses with 630-fs duration and 41.9-MHz repetition frequency were achieved at the centre wavelength of 1562 nm and 9-nm FWHM bandwidth. Multilayer graphene was obtained by mechanical exfoliation from a pure graphite block by using the scotch-tape method and deposited on a fibre ferrule to form a saturable absorber. The laser operated in a mode-locked regime with 37-mW pumping and 4-mW output power.  相似文献   

7.
Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser   总被引:1,自引:0,他引:1  
Xu JL  Li XL  Wu YZ  Hao XP  He JL  Yang KJ 《Optics letters》2011,36(10):1948-1950
High-quality graphene sheets with lateral size over 20 μm have been obtained by bath sonicating after subjecting the wormlike graphite marginally to mixed oxidizer. To date, to our knowledge, they are the largest graphene sheets prepared by exfoliation in the liquid phase. A saturable absorber mirror was fabricated based on these sheets. We exploited it to realize mode-locking operation in a diode-pumped Nd:GdVO(4) laser. A pulse duration of 16 ps was produced with an average power of 360 mW and a highest pulse energy of 8.4 nJ for a graphene mode-locked laser.  相似文献   

8.
Graphene dispersions in water are highly desirable for a range of applications such as biomedicines, separation membranes, coatings, inkjet printing and more. Recent novel research has been focussed on developing a green approach for scalable production of graphene. However, one important parameter, which is often neglected is the bulk temperature of the processing liquid. This paper follows our earlier work where optimal sono-exfoliation parameters of graphite in aqueous solutions were determined based on the measured acoustic pressure fields at various temperatures and input powers. Here, we take the next step forward and demonstrate using systematic characterisation techniques and acoustic pressure measurements that sonication-assisted liquid phase exfoliation (LPE) of graphite powder can indeed produce high quality few layer graphene flakes in pure water at a specific temperature, i.e. 40 °C, and at an optimised input generator power of 50%, within 2-h of processing. UV–vis analysis also revealed that the exfoliation, stability and uniformity of dispersions were improved with increasing temperature. We further confirmed the successful exfoliation of graphene sheets with minimal level of defects in the optimized sample with the help of Raman microscopy and transmission electron microscopy. This study demonstrated that understanding and controlling processing temperature is one of the key parameters for graphene exfoliation in water which offers a potential pathway for its large-scale production.  相似文献   

9.
In order to realize a wider application for graphene materials specifically in the field of energy storage, a simple and mass-scalable method described as “the atmospheric, low-temperature, shock-heating process” is proposed in this work. During this low-temperature process, the graphite oxide without pre-treatment is completely exfoliated to form the few-layer graphene materials at atmospheric conditions. The Brunauer-Emmett-Teller (BET)-specific surface area of acquired material at 350 °C can reach 487 m2 g?1. The acquired few-layer graphene materials are also confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM). The results demonstrate that this simple method is feasible for synthesizing the few-layer graphene materials. Besides that, the acquired graphene is also used as the cathode material in the surface-enabled lithium ion-exchanging cell. The galvanostatic charge/discharge tests show that the graphene prepared from this method is suitable for this system and displays a satisfactory electrochemical performance. The acquired graphene sample exhibits the reversible capacities of around 187, 107, 84, 58, and 45 mAh g?1 at 0.1, 2, 5, 10, and 15 A g?1, respectively. At the current density of 0.5 A g?1, the capacity retention can reach 75 % after 2000 cycles.  相似文献   

10.
We propose, design, and demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) employing a thin graphene polyvinyl alcohol (PVA) film as a passive saturable absorber (SA). The graphene is synthesized by electrochemical exfoliation of graphite at room temperature in 1% sodium dodecyl sulfate (SDS) aqueous solution. Graphene flakes obtained from the process are mixed with PVA solution as the host polymer to produce a thin film, which acts as a passive Q-switcher in the YDFL ring cavity. The laser generates a stable pulse operating at a wavelength of 1,076.4 nm with a threshold pump power of 73.7 mW. At a maximum 980 nm pump power of 113.6 mW, the YDFL generates an optical pulse train with a repetition rate of 25.53 kHz and a pulse width of 10 μs. The maximum pulse energy of 50.9 nJ is obtained at a pump power of 109.9 mW. A higher-performance Q-switched YDFL is expected to be achieved with optimization of the graphene saturable absorber and the laser cavity.  相似文献   

11.
Field-effect transistor characteristics of few-layer graphenes prepared by several methods have been investigated in comparison with those of single-layer graphene prepared by the in situ reduction of single-layer graphene oxide. Ambipolar features have been observed with single-layer graphene and n-type behaviour with all the few-layer graphenes, the best characteristics being found with the graphene possessing 2–3 layers prepared by arc-discharge of graphite in hydrogen. FETs based on boron and nitrogen doped graphene show n-type and p-type behaviour respectively.  相似文献   

12.

A method of obtaining graphene oxide from Hummers-modified natural flake graphite with subsequent synthesis of reduced graphene and few-layer graphite has been suggested. The structure and electrical performance of the synthesized material have been studied. The feasibility of making a high-capacitance flexible electrode using polyethylene substrates covered by a conductive ink has been demonstrated.

  相似文献   

13.
许宏  孟蕾  李杨  杨天中  鲍丽宏  刘国东  赵林  刘天生  邢杰  高鸿钧  周兴江  黄元 《物理学报》2018,67(21):218201-218201
自从石墨烯被发现以来,机械解理技术已经成为制备高质量二维材料的重要方法之一,在二维材料本征物性的研究方面展现出了独特的优势.然而传统机械解理方法存在明显的不足,如制备效率低、样品尺寸小等,阻碍了二维材料领域的研究进展.近些年我们在机械解理技术方面取得了一系列的突破,独立发展了一套具有普适性的新型机械解理方法.这种新型机械解理方法的核心在于通过改变解理过程中的多个参数,增强层状材料与基底之间的范德瓦耳斯相互作用,从而提高单层样品的产率和面积.本文着重以石墨烯为例,介绍了该技术的过程和机理.相比于传统机械解理方法,石墨烯的尺寸从微米量级提高到毫米量级,面积提高了十万倍以上,产率大于95%,同时石墨烯依然保持着非常高的质量.这种新型机械解理方法具有良好的普适性,目前已经在包括MoS2,WSe2,MoTe2,Bi2212等几十种材料体系中得到了毫米量级以上的高质量单层样品.更重要的是,在解理过程中,通过调控不同的参数,可以在层状材料中实现一些特殊结构的制备,如气泡、褶皱结构等,为研究这些特殊材料体系提供了重要的物质保障.未来机械解理技术还有很多值得深入研究的科学问题,该技术的突破将会极大地推动二维材料领域的研究进展.  相似文献   

14.
We demonstrate that graphene-based transparent and conductive thin films (GTCFs), fabricated by thermal reduction of graphite oxide, have very similar electronic and structural properties as highly oriented pyrolytic graphite (HOPG). Electron spectroscopy results suggest that the GTCFs are also semi-metallic and that the individual graphene sheets of the film are predominantly oriented parallel to the substrate plane. These films may therefore be considered as a technologically relevant analogue to HOPG electrodes, which cannot be easily processed into thin films.  相似文献   

15.
Superperiodic patterns were observed by STM on two kinds of finite-sized graphene sheets. One is nanographene sheets inclined from a highly oriented pyrolitic graphite (HOPG) substrate and the other is a several-layer-thick graphene sheets with dislocation-network structures against a HOPG substrate. As for the former, the in-plane periodicity increased gradually in the direction of inclination, and it is easily changed by attachment of a nanographite flake on the nanographene sheets. The oscillation pattern can be explained by the interference of electron waves confined in the inclined nanographene sheets. As for the latter, patterns and their corrugation amplitudes depended on the bias voltage and on the terrace height from the HOPG substrate. The interference effect by the perturbed and unperturbed waves in the overlayer is responsible for the patterns whose local density of states varies in space.  相似文献   

16.
We have studied magnetization of graphene nanocrystals obtained by sonic exfoliation of graphite. No ferromagnetism is detected at any temperature down to 2?K. Neither do we find strong paramagnetism expected due to the massive amount of edge defects. Rather, graphene is strongly diamagnetic, similar to graphite. Our nanocrystals exhibit only a weak paramagnetic contribution noticeable below 50?K. The measurements yield a single species of defects responsible for the paramagnetism, with approximately one magnetic moment per typical graphene crystallite.  相似文献   

17.
Graphene-based passively mode-locked erbium doped fiber laser is presented. Multilayer graphene was obtained by mechanical exfoliation of pure graphitic block and deposited on the fiber ferrule. The mode-locking performance was investigated under various laser pumping conditions. The laser could operate at fundamental repetition rate of 16.34 MHz with 844 fs pulse duration and 30 mW average output power. Also harmonic-mode locking of the laser is demonstrated. 294 and 800 MHz repetition rates were obtained (corresponding to the 18th and 49th harmonic of the fundamental repetition frequency, respectively) with nearly transform-limited pulses.  相似文献   

18.
The cross-sectional profiles of ripple structures on silicon (Si), silicon carbide (SiC), and highly oriented pyrolytic graphite (HOPG) were studied by direct observation. The ripple structures were cut by an ion beam, and their cross sections were observed by scanning electron microscopy. The results showed that the cross sections of coarse ripples on Si and SiC have a convex shape with narrower valleys, whereas those of HOPG have sharp ridges and wide wings with a poorer aspect ratio. This difference may arise from the difference in material phase conversion processes induced by femtosecond laser irradiation. The cross-sectional profiles of fine ripples on SiC and HOPG, which give useful information on the ripple formation process, are also discussed.  相似文献   

19.
Graphene Oxide (GO) sheets, suspended in an aqueous solution, were deposited on freshly cleaved highly oriented pyrolytic graphite (HOPG) and studied using Raman spectroscopy, atomic force microscopy (AFM) and scanning tunneling microscopy (STM). AFM phase imaging shows a distinct contrast between GO and the underlying HOPG substrate. Raman spectroscopy clearly showed the presence of GO sheets on the top of HOPG substrate. The AFM and STM images also reveal wrinkling, folding, and tearing of individual GO sheets after depositing onto an HOPG substrate. We have also observed a distinct cracking of a GO sheet after folding. We attribute this new cracking phenomenon to a weakening of C–C bonds during the oxidation of a graphene sheet.  相似文献   

20.
Dry etching of {0 0 0 1} basal planes of highly oriented pyrolytic graphite (HOPG) using active nitridation by nitrogen atoms was investigated at low pressures and high temperatures. The etching process produces channels at grain boundaries and pits whose shapes depend on the reaction temperature. For temperatures below 600 °C, the majority of pits are nearly circular, with a small fraction of hexagonal pits with rounded edges. For temperatures above 600 °C, the pits are almost exclusively hexagonal with straight edges. The Raman spectra of samples etched at 1000 °C show the D mode near 1360 cm−1, which is absent in pristine HOPG. For deep hexagonal pits that penetrate many graphene layers, neither the surface number density of pits nor the width of pit size distribution changes substantially with the nitridation time, suggesting that these pits are initiated at a fixed number of extended defects intersecting {0 0 0 1} planes. Shallow pits that penetrate 1-2 graphene layers have a wide size distribution, which suggests that these pits are initiated on pristine graphene surfaces from lattice vacancies continually formed by N atoms. A similar wide size distribution of shallow hexagonal pits is observed in an n-layer graphene sample after N-atom etching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号