首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 250 毫秒
1.
李剑  朱隽  尚长水  汪伟  熊学仕  龙继东 《光子学报》2008,37(5):1010-1014
用高速显微摄影技术对强流脉冲电子束轰击钽金属靶的过程进行了研究,获得了“神龙一号”加速器上靶材回喷过程的实验图像.实验表明,钽金属靶在强流脉冲电子束的作用下,有强烈的热释光现象产生,靶材的回喷粒子的轴向速度可达4.7 mm/μs.  相似文献   

2.
研究了强流脉冲电子束与钽金属靶相互作用后靶材流体动力学膨胀的轴向约束问题。由于电子束在金属钛和钽内的能量沉积存在差异,未完全气化的钛箔对气化膨胀的钽材能够起到约束作用,并且可以通过吸收钽的能量来降低钽的膨胀速度。通过分析比较电子束在靶上形成孔洞的形貌以及高速相机拍摄得到的不同时刻靶材喷射的图像,证实了钛箔能够对钽金属靶的轴向膨胀起到一定的约束作用。尤其是电子束打靶过后1μs内的初始阶段,约束效果比较明显。  相似文献   

3.
 使用Monte-Carlo程序MCNP在2维情况下模拟得到了高能通量脉冲电子束在钽金属靶中的能量沉积。根据能量沉积的模拟结果以及实验后靶上穿孔的大小和形貌,提出了电子束对不同结构钽金属靶破坏的物理机制。由于能量沉积的差异,1 mm实心靶中的热激波在一定时间内沿径向和轴向持续对靶材进行压缩,而在叠靶中这种压缩效果并不明显,因此实验后1 mm实心靶上穿孔的大小几乎是叠靶上的两倍。根据理论模型分析得到的靶材熔融喷射和层裂现象与实验结果相吻合。  相似文献   

4.
提出了一种基于射频直线加速器的多脉冲X光照相系统,有望用于材料动态性能诊断等流体物理动力学研究。基于射频加速器的特点,该套照相系统能够产生时间跨度10 s以上、数个脉冲间隔可调、脉宽为几十至一百ns的脉冲电子束,产生电子束束斑半高宽尺寸小于1 mm。通过蒙特卡罗模拟程序Geant4,分析计算了特定的几何布局以及不同厚度及电子束束斑条件下,电子束打靶后在靶中的能量沉积,靶中的电子束散射对X光焦斑的影响,以及1 m处的照射量,探讨了这套X光照相系统的应用可行性。结果表明,在30 MeV,400 nC电子束轰击厚度为1 mm的靶条件下,1 m处照射量约为9.1 R,靶厚在1~2 mm范围内并未引起X光焦斑的明显增大。较小横向尺寸的电子束会引起靶体局部升温严重,将会制约脉冲数量;采用旋转靶能够提升脉冲数量,通过分析二维旋转靶的应力,分析了靶材升温以及钽/钽合金屈服强度对脉冲间隔的限制作用。  相似文献   

5.
轫致辐射转换靶破坏过程诊断   总被引:2,自引:2,他引:0       下载免费PDF全文
直线感应加速器能够产生一个高功率、强流脉冲电子束,该电子束与轫致辐射转换靶作用可以产生一个脉冲的、强剂量的X光,同时会对轫致辐射靶本身也造成烧蚀破坏,甚至洞穿。设计研制了一套激光探测系统,对神龙一号加速器上的轫致辐射靶进行了诊断,得到了0.4 mm钽靶的破坏穿孔开始时刻在电子束打靶后约240μs处,整个靶穿孔过程持续时间可达1.5 ms。  相似文献   

6.
长脉冲激光辐照LY—12铝靶烧蚀表面的后退速度   总被引:1,自引:0,他引:1  
用烧穿靶法测量自由振荡长脉冲 1.06μm会聚激光束烧蚀LY-12铝合金靶时间,用电子微量天平、金相显微仪、收集器等测量激光烧蚀铝靶材参量Am和h的技术,给出激光束烧蚀铝靶的烧蚀表面后退速度和烧蚀速度的结果。当烧蚀靶材的激光通量I=10~5~10~7W/cm~2时,烧蚀表面后退速度为0.5~3.8m/s,烧蚀速度为 1~8g/s。  相似文献   

7.
12MeV强流脉冲电子束对钽靶的破坏研究   总被引:2,自引:0,他引:2  
强流高能电子束由于具有很强穿透能力,在材料内的能量沉积具有体分布特点,因此其对材料的辐照破坏体现出和低能电子以及X光等不同的特点.本文分析了金相显微镜和扫描电镜下的被12MeV的强流电子束轰击后的1.2mm厚度钽靶的破坏点形貌,其破坏断面体现为力学韧性撕裂,且关于靶中心基本对称.为了解释这种现象,文中用蒙特卡罗的数值模拟方法给出了电子束在钽靶内的沉积能量分布:能量沉积呈现靶中心吸能高,两侧低,且关于中心基本对称的特点.针对破坏断面特点和靶的吸热情况,我们给出高能电子束对靶材破坏初步的定性解释:认为高能电子束的强穿透能力使得靶材各部分几乎同时加热.靶材在极短时间里吸收大量能量,发生剧烈膨胀.由于能量沉积特点,中心部分材料膨胀最厉害,受到两侧边界的强烈约束,将产生两大小相近的热激波相对传播.激波在两侧自由界面反射,产生向内传播稀疏波.当两个稀疏波在靶中心区域相遇,就造成了靶对称撕裂的破坏形态.  相似文献   

8.
何辉  禹海军  王毅  戴文华 《强激光与粒子束》2019,31(12):125102-1-125102-5
对4 MeV闪光X光机的轫致辐射靶参数进行了设计和模拟计算。利用蒙特卡罗程序,计算得到当轫致辐射靶的有效钽靶材厚度约为0.6 mm时,靶正前方1 m处产生的单脉冲X光的照射量值最大,可以达到约2.86×10-3 C/kg,满足4 MeV闪光X光机对其单脉冲X光的设计要求。对不同能量下的单脉冲电子束加载在轫致辐射靶上的能量沉积密度进行了计算和比较,分析研究了不同结构下的靶破坏,结果表明:轫致辐射靶采用叠靶结构的钽靶能够满足4 MeV闪光机的实验需求。  相似文献   

9.
能量20 MeV、流强2.5 kA的电子束脉冲可以在数十ns的时间内将靶材料加载至温密物质状态,进而可以开展材料状态方程、电导率以及不透明度等的实验研究工作。介绍了在神龙一号加速器上开展温密物质实验研究的束靶作用方式以及相应的测试技术。对电子束在直径0.3 mm、长1 mm的金属靶丝内的能量沉积和流体动力学响应进行了数值模拟。结果表明:靶丝的温度随着靶材料原子序数的增加而上升,而靶丝内温度分布的均匀性随着原子序数的增加而降低;在电子束加载后40 ns时刻Ta丝内的最高温度可以达到约1.6 eV。  相似文献   

10.
建立了观测和记录不同激光入射角度烧蚀6061铝合金靶材等离子体反喷羽流特性的实验装置,对实验结果图像进行了处理,并对处理结果进行了数值拟合。拟合结果表明,激光辐照靶材后100ns内,等离子体反喷羽流大致分布区域为靶面外5mm×5mm。激光以不同角度入射时,等离子体反喷速度相对于靶面法线方向大致呈轴对称分布。当激光相对靶面法线方向小角度范围内入射时,激光烧蚀引起的冲量主要沿靶面法线方向,反喷羽流沿靶面法方向的速度为20~40km·s-1。激光斜入射时,反喷羽流沿靶面法线方向的速度要大于激光垂直入射的情况。高斯函数可以很好地描述等离子体反喷羽流速度分布。  相似文献   

11.
 利用能量约450 keV、焦斑直径1~4 mm的低能X光对神龙一号直线感应加速器束靶作用后钽靶的破坏进行诊断,利用增强型电荷耦合器件(ICCD)对诊断过程记录,得到束靶作用后数μs时间内钽靶材料密度的变化。结果表明:在束靶作用后约1 μs内靶材料密度基本没有变化,且该时间段内ICCD相机没有观察到有靶前钽靶材料的微粒喷射。  相似文献   

12.
叠靶研究   总被引:3,自引:1,他引:2       下载免费PDF全文
 直线感应加速器(LIA)产生的高能、强流电子束与轫致辐射靶作用能够产生具有高剂量、小焦斑的X光,但伴随产生的回流离子会导致电子束束斑变大与X光分辨率降低,在多脉冲情况下更会影响到后续电子束的束靶作用等。叠靶结构能够增大束靶作用的立体空间,降低在靶面的能量沉积,可有效抑制回流离子的产生。对叠靶结构模型进行了理论计算与实验研究,并与单靶情况相比较,证实了在两种靶结构下所得到的X光照射量大小与角分布基本相同,但对于叠靶情况下靶面没有出现烧蚀现象,从而从根本上抑制了由靶面产生回流离子而对束流产生的过聚焦效应。  相似文献   

13.
强流电子束入射叠靶能量沉积计算   总被引:1,自引:1,他引:0       下载免费PDF全文
计算了多脉冲相对论强流电子束入射钽-石墨叠靶的能量沉积和轫致辐射谱。能量沉积采用Geant4程序计算,轫致辐射谱根据基本的辐射理论和蒙特卡罗方法计算。结果显示,各层的热区能量沉积呈由大到小的递减分布,截面轫致辐射分布和电子束径向分布主要受钽层的影响。石墨层的低能量沉积率和高热容能改善叠靶的性能。对于单脉冲,钽-石墨层厚比为1∶1时,石墨能全部吸收相邻钽层的热沉积,轫致辐射效率为35.4%;4脉冲情况下,钽-石墨层厚比应为1∶13,总轫致辐射效率降到19.9%。考虑轫致辐射剂量和质量,钽-石墨两者的厚度比为1∶5时,钽层的总厚度应为1.2 mm;当钽-石墨层厚比为1∶10时,钽层的总厚应降到0.7 mm。  相似文献   

14.
利用六波长瞬态光学高温计测量了"神龙一号"加速器发射的高能电子束与靶材作用后靶受作用区的温度变化过程。获得了厚度为0.1~0.25mm的Ta,Al和Cu片靶与强流电子束作用后的温度变化过程,最高温度接近9000K,达到了温密物质区域。实验结果表明,利用"神龙一号"加速器发射的强流电子束与特定靶材作用可以获得可供观测的温密物质,而多波长瞬态光学高温计是测量这种温密物质的温度变化的有效手段。  相似文献   

15.
An intense pulsed electron beam produced by a pseudospark discharge is used for material processing. The electron beam propagates in a self-focused manner in the background gas. Hardly 12 ns after the beginning of the discharge the fraction of space charge neutralization is about 96%. To sustain the neutralization effect high energy electrons (E <500 keV) are accelerated in radial direction at the beam head, due to strong electric field gradients. At current maximum the beam pinches due to its own magnetic field. At peak current of 400 A and charging voltage up to 16 kV power density reaches 109 W/cm 2 on the target surface. Some results of copper thin films are presented. Due to the high expansion velocity of 104 m/s of the ablated target material a copper-matrix has been masked  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号