首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用布拉格光纤光栅作为谐振腔,实现了980 nm半导体激光器端面泵浦下的双包层掺镱光纤激光器的连续和调Q运转.连续激光实验结果表明,在泵浦功率固定时,增益光纤存在激光输出功率最大情况下的最佳长度,当泵浦功率增大时,最佳增益光纤长度也随之增加.采用石墨烯分散液作为可饱和吸收体,插入增益光纤与布拉格光纤光栅之间,实现了光纤激光器的稳定被动调Q运转.当泵浦功率为2.87W时,得到了最小脉冲宽度33 ns、重复率38.5 kHz的脉冲序列;随着泵浦功率进一步增大,出现不稳定的调Q锁模现象.  相似文献   

2.
氧化石墨烯被动调Q掺铒光纤激光器   总被引:2,自引:1,他引:1       下载免费PDF全文
报道了基于氧化石墨烯的被动调Q掺铒光纤激光器。激光器采用环形腔结构,调Q器件为自制的氧化石墨烯可饱和吸收镜。泵浦功率在81~505 mW范围内时,得到了重复频率68~124 kHz的稳定的调Q脉冲输出,脉宽为0.47~1.60 s。由于泵浦功率限制,激光器最大输出功率为10 mW, 相应单脉冲能量为80.6 nJ。此种基于氧化石墨烯可饱和吸收体的被动调Q光纤激光器体积小、成本低廉、结构简单、稳定性高、光束质量高,具有广阔的应用前景。  相似文献   

3.
许阳  康喆  贾志旭  刘来  赵丹  秦冠仕  秦伟平 《发光学报》2013,34(12):1631-1635
利用种子诱导生长法制备了长径比为5的金纳米棒,测量了它的吸收谱,结果表明该纳米棒具有较宽的吸收带(800~1 600 nm)。进一步测量了它的非线性吸收性质,结果表明它在1.56 μm波长处具有可饱和吸收特性,有望被用于实现被动调Q脉冲激光的输出。将该可饱和吸收体置于掺铒光纤激光器腔内,当泵浦功率增至30 mW时开始有稳定的调Q脉冲激光输出,输出激光的工作波长为1.56 μm。当泵浦功率为205 mW时,可获得的最大输出功率约6.9 mW,脉冲能量达219 nJ。研究结果表明,这种新型可饱和吸收体在脉冲激光领域具有广阔的应用前景。  相似文献   

4.
为实现具有高脉冲能量的调Q脉冲激光输出,利用微纳光纤-单壁碳纳米管复合的方法制备可饱和吸收体,并对基于该类型可饱和吸收体器件的被动调Q掺镱光纤激光器进行研究。采用拉伸法将普通单模石英光纤拉制成微纳光纤,将其与单壁碳纳米管溶液复合,进一步制备成全光纤集成型器件。将该器件置于环形腔掺镱光纤激光器中,利用976 nm半导体激光器作为抽运源。当抽运功率为53 mW时,实现了调Q脉冲激光输出,激光中心波长为1 039 nm。进一步提升抽运功率至76 mW,可获得脉冲宽度为3.1μs、重复频率为25.5 kHz、单脉冲能量为941nJ的调Q脉冲激光输出。研究表明,利用微纳光纤制备的可饱和吸收体器件具有较高的损伤阈值,可用于实现高脉冲能量的激光输出。  相似文献   

5.
采用中心波长为975nm半导体激光器泵浦高掺铒氟化物双包层光纤Er∶ZBLAN,并在谐振腔内插入主动调Q元件,获得了工作频率为1~10kHz的2.8μm激光主动调Q脉冲输出.在工作频率为10kHz条件下,获得了最大单脉冲能量为134.5μJ、脉宽为127.3ns、峰值功率为1.1kW的脉冲输出.  相似文献   

6.
石墨烯可调谐被动调Q掺铒光纤激光器   总被引:1,自引:0,他引:1       下载免费PDF全文
基于光学沉积方法,制备了石墨烯可饱和吸收体,并利用此可饱和吸收体搭建了环形腔结构的被动调Q掺铒光纤激光器,实现了稳定的调Q激光脉冲输出,其重复频率为5.1~14.2 kHz,最窄激光脉冲宽度为8 s,最大平均功率为162.3 W,且通过调节偏振控制器,中心波长在1556~1558 nm可调。  相似文献   

7.
利用超声剥离法制备了超薄层MoS_(2)纳米片分散液可饱和吸收体,以石英池为容器插入Nd∶YAG激光器的平凹谐振腔中,调节谐振腔镜的位置并增大泵浦功率,成功实现了Nd∶YAG激光器被动调Q脉冲输出。实验结果显示,泵浦功率为2.46 W时,激光器开始调Q运转。泵浦功率为14.55 W时,实现了485 mW的脉冲激光输出功率,重复频率为189.75 kHz,脉冲宽度为1.2μs,对应的最大脉冲能量为2.56μJ。结果表明,超薄层MoS_(2)分散液是适用于1064 nm波长固体激光器被动调Q运转的可饱和吸收体材料。  相似文献   

8.
甘雨  向望华  张贵忠  周晓芳  张兵  张强 《光子学报》2007,36(9):1565-1569
实验研究了环行腔掺镱光纤激光器的运行特性.发现在由未完全泵浦的掺镱光纤充当的慢可饱和吸收体与偏振控制器和偏振敏感型隔离器所组成的等效快可饱和吸收体的共同作用下,仔细调节偏振控制器的角度与泵浦功率的大小,掺镱光纤激光器可分别稳定地工作在连续、调Q、调Q锁模和连续锁模多种运转方式.对于不同的运转方式,从原理上给予了一定的解释,并对各种运转方式的工作条件进行了详细研究.由于其具有全光纤结构,且腔内不含任何主动器件,同时有良好的稳定性.  相似文献   

9.
自调Q、自锁模铒/镱共掺光纤激光器   总被引:4,自引:1,他引:3  
研究了结构新颖的环形腔铒/镱(Er/Yb)共掺双包层光纤激光器.为了获得高功率激光输出,使用6个激光二极管(LD)同时抽运Er/Yb共掺光纤,采用光纤光栅(FBG)Sagnac环作为波长选择器,得到了中心波长为1548.11 nm、谱线宽度为0.06 nm的窄线宽激光输出;并利用增益光纤作为可饱和吸收体,实现了自调Q、自锁模脉冲输出.当抽运功率为719 mW时,激光器输出自调Q脉冲,脉冲周期为20μs,脉冲宽度为2.8μs,脉冲的平均功率为38.4mW,峰值功率为274.3mW;当抽运功率为3.6 W时,激光器输出自锁模脉冲,脉冲宽度为4ns,平均功率为319 mW,脉冲峰值功率大于10 W,重复频率为7.937 MHz.  相似文献   

10.
利用超声剥离法制备了超薄层MoS_2纳米片分散液可饱和吸收体,以石英池为容器插入Nd∶YAG激光器的平凹谐振腔中,调节谐振腔镜的位置并增大泵浦功率,成功实现了Nd∶YAG激光器被动调Q脉冲输出。实验结果显示,泵浦功率为2.46 W时,激光器开始调Q运转。泵浦功率为14.55 W时,实现了485 mW的脉冲激光输出功率,重复频率为189.75 kHz,脉冲宽度为1.2μs,对应的最大脉冲能量为2.56μJ。结果表明,超薄层MoS_2分散液是适用于1 064 nm波长固体激光器被动调Q运转的可饱和吸收体材料。  相似文献   

11.
基于半导体可饱和吸收镜和光纤光栅实现了稳定的2 m波段被动调Q光纤脉冲激光器,输出激光的中心波长为1958.2 nm。随着泵浦功率的增加,输出脉冲的重复频率不断增加,而对应脉冲的宽度不断减小。输出脉冲重复频率的变化范围为20~80 kHz,脉冲宽度的变化范围为490 ns~1 s。当泵浦功率为1.3 W时,调Q光纤激光器的最大平均输出功率为91 mW,脉冲重复频率为80 kHz,脉冲宽度为490 ns,对应的最大单脉冲能量约为1.14 J。  相似文献   

12.
将石墨烯作为宽带可饱和吸收体分别应用在1.06μm Nd∶YAG固体激光器、2μm Tm∶YAP固体激光器以及1.55μm掺铒全光纤激光中.石墨烯采用化学汽相沉积法制备,以乙炔作为碳源,25μm厚的铜箔作为生长基体和催化剂,H2为载气,Ar为辅助气体,在常压、1 000℃高温条件下进行生长.1.06μm Nd∶YAG固体激光器实验中,采用直线型侧面泵浦腔型结构,当输出功率为10W时,得到了重复频率为360kHz,脉冲宽度240ns的最短脉冲输出,其单脉冲能量为27μJ,峰值功率为115.7W;2μm Tm∶YAP固体激光器实验中,使用中心波长在795nm附近的半导体激光器作为泵浦源,采用10%透过率的输出镜获得了脉宽为1.4μs的最窄调Q脉冲;环形腔1.55μm掺铒全光纤激光器实验中,利用1.25m长的高掺铒光纤作为增益光纤,当泵浦功率为100mW时,输出功率为10mW,获得了脉冲宽度314ps的稳定被动连续锁模脉冲,脉冲重复频率为20MHz并验证了同次制备的石墨烯的宽带可饱和吸收特性.  相似文献   

13.
报道了2μm被动调Q的Ho∶YAG激光器,该激光器采用Tm~(3+)光纤激光器作为泵浦源,使用多层石墨烯作为可饱和吸收体。在连续波激光输出模式下,当泵浦功率为4.2 W时,获得了750 mW激光输出,输出激光中心波长为2.09μm,斜率效率为29.6%。在连续波激光器谐振腔中插入多层石墨烯可饱和吸收体并调整谐振腔,获得了脉冲激光输出。当泵浦功率为4.2 W时,获得最小脉冲宽度3.1μs、重复频率66.6 kHz的脉冲激光输出,其最大平均输出功率为170 mW,斜率效率为12.6%,光束质量因子M_x~2=1.15,M_y~2=1.12。  相似文献   

14.
简介了近年来发展起来的若干种新型固体激光器被动调Q用吸收体:掺Cr4+系列,Cr,Nd∶YAG自调Q激光晶体,人眼安全激光器被动调Q用吸收体,GaAs吸收体,半导体可饱和吸收镜。着重介绍了固体激光器和光纤激光器调Q用半导体可饱和吸收镜的原理、研制方法及应用状况。  相似文献   

15.
姚杰  王勇刚  李永放 《应用光学》2018,39(2):279-283
利用WS2的可饱和吸收特性,在激光二极管侧面抽运Nd:YAG固体激光器Z型腔结构中分别实现了被动调Q和被动调Q锁模运转。实验表明:当泵浦电流为9.5 A时,开始启动调Q运转,当泵浦电流大于9.8 A时,调Q激光脉冲趋于稳定。当泵浦电流为12.8 A时,被动调Q输出的最大平均功率为466 mW,最窄脉冲宽度为3.205 μs,对应的重复频率为71.70 kHz,此时最大单脉冲能量为6.5 μJ。当泵浦电流达到13.4 A时,激光器实现调Q锁模运转。调Q锁模的最高输出功率为590 mW,调Q包络频率为71.98 kHz,单个调Q包络内的脉冲串重复频率123.1 MHz,每个调Q包络中包含369个脉冲,单脉冲能量为22.2 nJ。结果表明WS2材料可以作为可饱和吸收体用于固体激光器中。  相似文献   

16.
用离子注入的半绝缘GaAs晶片作为吸收体和输出镜,在双包层掺镱光纤激光器上实现了调Q锁模. 离子注入的能量为400keV的As+离子,注入剂量为1016/cm2,然后在600℃下退火20min. 当抽运功率为5W时, 脉冲平均输出功率为200mW, 调Q包络重复频率为50kHz, 半高宽为4μs,锁模脉冲重复频率为15MHz. 关键词: 离子注入GaAs 掺镱光纤激光器 被动调Q锁模  相似文献   

17.
张攀政  范薇  汪小超  林尊琪 《物理学报》2011,60(2):24206-024206
讨论了利用光谱滤波器实现自启动的被动锁模掺Yb3+光纤环形激光器的锁模机理,并研制出全光纤结构超短脉冲掺Yb3+光纤环形激光器.使用980 nm二极管激光器作为抽运源,高掺杂浓度掺Yb3+光纤作为增益介质.在净群速度色散为正的环形腔中加入光谱滤波器,抑制Yb3+离子在1030 nm强发射峰的同时,通过对啁啾脉冲的光谱滤波实现脉冲压缩.光谱滤波器与光纤非线性偏振旋转效应相结合,实现了激光器在1053 nm可自启动、十分稳定的锁模运转.激光器锁模阈值功率300 mW,平均斜率效率18.3%,最大输出功率53.07 mW,对应最大输出脉冲能量3.2 nJ.锁模光脉冲中心波长1053.6 nm,3 dB带宽10.84 nm,重复频率16.45 MHz.锁模脉冲宽度为皮秒量级,经腔外光栅对压缩至188 fs. 关键词: 3+光纤激光器')" href="#">掺Yb3+光纤激光器 自启动锁模 全光纤  相似文献   

18.
利用非线性光环形镜(NOLM)的可饱和吸收特性实现了可自启动的2μm全光纤高能量被动锁模掺铥光纤激光器。当泵浦功率大于3W时,激光器工作在连续或不稳定脉冲运转状态;泵浦功率达到4.69W后,输出为自启动锁模脉冲,重复频率4.26MHz,中心波长2 061.5nm,光谱半极大宽度18.1nm,平均输出功率8.8mW;继续增加泵浦功率到最大值7.56W,可以得到中心波长2 062.2nm、光谱半极大宽度17.1nm、斜率效率为6.2%、脉冲宽度和能量分别为424fs和65.6nJ的稳定锁模脉冲。这是目前已报道的在未经放大情况下脉冲能量最高的2μm锁模脉冲光纤激光器。  相似文献   

19.
利用层状半导体β相硒化铟作为可饱和吸收体,在掺镱光纤激光器中实现稳定的调Q及锁模运转。经测量该可饱和吸收体在1μm波段调制深度及非饱和损耗分别为47%及20%。将可饱和吸收体插入掺镱光纤激光器中,可获得53.42 kHz到217 kHz重频可调的调Q脉冲。其最窄脉冲宽度为630 ns,最大单脉冲能量为47.9 nJ。优化激光谐振腔后可进一步实现稳定的锁模输出,其重频为10.82 MHz,最大输出功率为51.2 mW,最大单脉冲能量为4.7 nJ。实验证明了β相硒化铟作为可饱和吸收体在近红外超快非线性光学方面的潜力。  相似文献   

20.
 在一种掺镱(Yb3+)光纤锁模激光器中。谐振腔采用近“8”字形环形结构,并巧妙地引入半导体可饱和吸收镜(SESAM),腔内引入起偏器和偏振控制器,利用非线性偏振旋转的被动锁模机理,结合SESAM慢可饱和吸收体的自启动作用,在极低的泵浦功率下,实现了稳定的调Q脉冲输出和锁模输出。当泵浦功率为18 mW时,调Q脉冲重复频率为16 kHz,脉冲宽度4 μs,光谱宽度为2.34 nm。当泵浦功率为60 mW时,实现了激光器连续锁模,输出功率8 mW,重复频率20 MHz,光谱宽度3.54 nm,脉宽在ps和亚ps量级,而且在调整偏振控制器的角度时,观察到了波长的调谐现象,调谐范围为1 028~1 530 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号