首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose an alternative method for the quantum non-demolition measurement of photon numbers wherein weak cross-Kerr nonlinearities are to be used. The usual approach to quantum non-demolition measurements of quantum number involves encoding the photon number, through a cross-Kerr interaction, into a phase shift of a probe coherent state which is then detected through balanced homodyning. Weak nonlinearities produce small phase shifts which are difficult to detect and distinguish. In the method we propose, unbalanced homodyning acts as a displacement operator on the probe beam coherent state such that the cross-Kerr interaction encodes the photon number into the amplitude of a new coherent state. The value of the photon number can be determined by inefficient photon counting on the new coherent state. Our proposed method requires fewer resources than does the usual approach.  相似文献   

2.
Observables of quantum systems can possess either a discrete or a continuous spectrum. For example, upon measurements of the photon number of a light state, discrete outcomes will result whereas measurements of the light's quadrature amplitudes result in continuous outcomes. If one uses the continuous degree of freedom of a quantum system for encoding, processing or detecting information, one enters the field of continuous‐variable (CV) quantum information processing. In this paper we review the basic principles of CV quantum information processing with main focus on recent developments in the field. We will be addressing the three main stages of a quantum information system; the preparation stage where quantum information is encoded into CVs of coherent states and single‐photon states, the processing stage where CV information is manipulated to carry out a specified protocol and a detection stage where CV information is measured using homodyne detection or photon counting.  相似文献   

3.
We firstly give a nonlocal method for generating pair coherent state with two traveling wave fields in distinct districts. The experimental scheme proposed is based on a two-mode photon number matching process, which employs weak cross-Kerr media and on/off detection. Then we discuss the details for implementing this scheme, showing that it is robust against the low quantum efficiency of photon detectors and offers nearly perfect pair coherent states. Finally, we show how a two-mode Schrödinger cat state and a generalized two-mode correlated photon number state can be prepared via this matching process.  相似文献   

4.
We use quantum field entropy to measure the degree of entanglement for a coherent state light field interacting with two atoms that are initially in an arbitrary two-qubit state. The influence of different mean photon number of the coherent field on the entropy of the field is discussed in detail when the two atoms are initially in one superposition state of the Bell states. The results show that the mean photon number of the light field can regulate the quantum entanglement between the atoms and light field.  相似文献   

5.
We report on the experimental observation of quantum-network-compatible light described by a nonpositive Wigner function. The state is generated by photon subtraction from a squeezed vacuum state produced by a continuous wave optical parametric amplifier. Ideally, the state is a coherent superposition of odd photon number states, closely resembling a superposition of weak coherent states |alpha > - |-alpha >. In the limit of low squeezing the state is basically a single photon state. Light is generated with about 10,000 and more events per second in a nearly perfect spatial mode with a Fourier-limited frequency bandwidth which matches well atomic quantum memory requirements. The generated state of light is an excellent input state for testing quantum memories, quantum repeaters, and linear optics quantum computers.  相似文献   

6.
The detection of microwave states is complicated by strong thermal noise, which is inevitably introduced by linear amplifiers. We show how to extract from measured data normally or anti-normally ordered moments of photon creation and annihilation operators, the set of which contains complete information on the quantum state of an electromagnetic field. Equations for the evolution of the quantum state are derived in terms of moments. Using this approach, we consider in detail issues of decoherence and thermalization of microwave quantum states. Results are illustrated using the examples of Fock, coherent, squeezed, thermal, and even and odd coherent states (Schrödinger cat states).  相似文献   

7.
Present work is an attempt to compare quantum discord and quantum entanglement of quasi-Werner states formed with the four bipartite entangled coherent states (ECS) used recently for quantum teleportation of a qubit encoded in superposed coherent state. Out of these, the quasi-Werner states based on maximally ECS due to its invariant nature under local operation is independent of measurement basis and mean photon numbers, while for quasi-Werner states based on non-maximally ECS, it depends upon measurement basis as well as on mean photon number. However, for large mean photon numbers since non-maximally ECS becomes almost maximally entangled therefore dependence of quantum discord for non-maximally ECS based quasi-Werner states on the measurement basis disappears.  相似文献   

8.
We demonstrate the reversible mapping of a coherent state of light with a mean photon number (-)n approximately equal to 1.1 to and from the hyperfine states of an atom trapped within the mode of a high-finesse optical cavity. The coherence of the basic processes is verified by mapping the atomic state back onto a field state in a way that depends on the phase of the original coherent state. Our experiment represents an important step toward the realization of cavity QED-based quantum networks, wherein coherent transfer of quantum states enables the distribution of quantum information across the network.  相似文献   

9.
We study optical schemes for generating both a displaced photon and a displaced qubit via conditional measurement. Combining one mode prepared in different microscopic states (one-mode qubit, single photon, vacuum state) and another mode in macroscopic states (coherent state, single photon added coherent state), a conditional state in the other output mode exhibits properties of a superposition of the displaced vacuum and a single photon. We propose to use the displaced qubit and entangled states composed of the displaced photon as components for quantum information processing. Basic states of such a qubit are distinguishable from each other with high fidelity. We show that the qubit reveals both microscopic and macroscopic properties. Entangled displaced states with a coherent phase as an additional degree of freedom are introduced. We show that additional degree of freedom enables to implement complete Bell state measurement of the entangled displaced photon states.  相似文献   

10.
We investigate the implementation of binary projective measurements with linear optics. This problem can be viewed as a single-shot discrimination of two orthogonal pure quantum states. We show that any two orthogonal states can be perfectly discriminated using only linear optics, photon counting, coherent ancillary states, and feedforward. The statement holds in the asymptotic limit of a large number of these physical resources.  相似文献   

11.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

12.
We study the interaction between a single-mode quantized field and a quantum system composed of two qubits. We suppose that two qubits initially be prepared in the mixed and separable state, and study how entanglement between two qubits arises in the course of evolution according to the Jaynes-Cummings type interaction with nonclassical radiation field. We also investigate the relation between entanglement and purity of qubit subsystem. We show that different photon statistics have different effects on the dynamical behavior of the qubit subsystem. When the qubits are initially prepared in the maximally mixed and separable state, for coherent state field we cannot find entanglement between two qubits; for squeezed state field entanglement between two qubits exists in several short period of time; for even and odd coherent state fields of large photon number, the dynamical behavior of the entanglement between two qubits shows collapse and revival phenomenon. For odd coherent state field of small photon number, the entanglement with both qubits initially prepared in maximally mixed state can be stronger than that with both qubits initially prepared in pure states. For fields of small photon number, the entanglement strongly depends on the states they are initially prepared in. For coherent state field, and odd and even coherent state fields of large photon number, the entanglement only depends on the purity of the initial state of qubit subsystem. We also show that during the evolution the unentangled state may be purer than the entangled state, and the maximum degree of entanglement may not occur at the time when the qubit subsystem is in the purist state.  相似文献   

13.
We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. At the two-photon resonance between the two electron-spin states, the detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. In a coherent population trapping state without light scattering, the nuclear state is projected into an eigenstate of the Overhauser field operator, and electron decoherence due to nuclear spins is suppressed: We show that this limit can be approached by adapting the driving frequencies when a photon is detected. We use a Lindblad equation to describe the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 to 500 ns after a preparation time of 10 micros.  相似文献   

14.
Multiphoton entanglement concentration and quantum cryptography   总被引:1,自引:0,他引:1  
Multiphoton states from parametric down-conversion can be entangled both in polarization and photon number. Maximal high-dimensional entanglement can be concentrated postselectively from these states via photon counting. This makes them natural candidates for quantum key distribution, where the presence of more than one photon per detection interval has up to now been considered undesirable. We propose a simple multiphoton cryptography protocol for the case of low losses.  相似文献   

15.
周冬林  匡乐满 《中国物理 B》2009,18(4):1328-1332
This paper introduces two types of two-mode excited entangled coherent states (TMEECSs) |Ψ±(α,m,n)>, studies their entanglement characteristics, and investigates the influence of photon excitations on quantum entanglement. It shows that for the state |Ψ+(α,m,m)> the two-mode photon excitations affect seriously entanglement character while the state |Ψ-(α,m,m)> is always a maximally entangled state, and shows how such states can be produced by using cavity quantum electrodynamics and quantum measurements. It finds that the entanglement amount of the TMEECSs is larger than that of the single-mode excited entangled coherent states with the same photon excitation number.  相似文献   

16.
林惇庆  朱泽群  王祖俭  徐学翔 《物理学报》2017,66(10):104201-104201
本文详细研究了一种相位型三头薛定谔猫态的一些量子统计属性,包括光子数分布、平均光子数、亚泊松分布、压缩效应以及Wigner函数等.我们发现,三头猫态的Wigner函数都可以出现负值,与二、四头猫态一样,说明它们都可以体现出非经典特性.与二头猫态不同,三头猫态在一定参数范围内可以呈现亚泊松分布,这点与四头猫态相类似,但弱于四头猫态.另外,三头猫态和四头猫态都没有压缩属性,但二头猫态具有压缩属性.  相似文献   

17.
The effect of two quantum state engineering processes that can be used to burn a hole at vacuum in the photon number distribution of quantum states of radiation field is compared using various witnesses of lower- and higher-order nonclassicality as well as a measure of nonclassicality. Specifically, the modification in nonclassical properties due to vacuum state filtration and a single photon addition on an even coherent state, binomial state, and Kerr state are investigated using the criteria of lower- and higher-order antibunching, squeezing, and sub-Poissonian photon statistics. Further, the amount of nonclassicality present in these engineered quantum states having enormous applications in continuous variable quantum communication is quantified and analyzed by using an linear entropy-based entanglement potential. It is observed that all the quantum states studied here are highly nonclassical, and the hole-burning processes can introduce/enhance nonclassical features. However, it is not true in general. A hole at vacuum implies a maximally nonclassical state (as far as Lee's nonclassical depth is concerned), but a particular process of hole burning at vacuum does not ensure the existence of any particular nonclassical feature. Specifically, lower- and higher-order squeezing are not observed for photon-added and vacuum filtered even coherent states.  相似文献   

18.
考虑原子间偶极相互作用,求出好腔中的Bell态原子与纠缠相干态光场相互作用系统的保真度。结果表明,对于理想腔,若原子初始时刻处于相干保持态,系统保真度始终等于1;若原子初始时刻处于其余Bell态之一,腔场初态的平均光子数很小,系统保真度在0~1之间作周期性振荡,随着腔场初态的平均光子数的增加,系统保真度的振荡频率增大,振幅减小。对于好腔,若原子初始时刻处于相干保持态,系统保真度呈指数单调衰减;若原子初始时刻处于其余Bell态之一,系统保真度呈指数振荡衰减,且随着腔场初态的平均光子数的增加,系统保真度的振荡频率增大,振幅减小。  相似文献   

19.
考虑原子间偶极相互作用,求出好腔中的Bell态原子与纠缠相干态光场相互作用系统的保真度.结果表明,对于理想腔,若原子初始时刻处于相干保持态,系统保真度始终等于1;若原子初始时刻处于其余Bell态之一.腔场初态的平均光子数很小,系统保真度在0~1之间作周期性振荡,随着腔场初态的平均光子数的增加,系统保真度的振荡频率增大,振幅减小.对于好腔,若原子初始时刻处于相干保持态,系统保真度呈指数单调衰减;若原子初始时刻处于其余Bell态之一,系统保真度呈指数振荡衰减,且随着腔场初态的平均光子数的增加,系统保真度的振荡频率增大,振幅减小.  相似文献   

20.
We describe proof-of-principle experiments demonstrating a novel approach for generating pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. The approach is based on preparation of an atomic ensemble in a state with a desired number of atomic spin excitations, which is later converted into a photon pulse. Spatiotemporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and Electromagnetically Induced Transparency in an optically dense atomic medium. Using photon counting experiments, we observe Electromagnetically Induced Transparency based generation and shaping of few-photon sub-Poissonian light pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号