首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Bismuth telluride(Bi_2Te_3) based alloys, such as p-type Bi_(0.5)Sb_(1.5)Te_3, have been leading candidates for near room temperature thermoelectric applications. In this study, Bi_(0.48)Sb_(1.52)Te_3 bulk materials with MnSb_2Se_4 were prepared using high-energy ball milling and spark plasma sintering(SPS) process. The addition of MnSb_2Se_4 to Bi_(0.48)Sb_(1.52)Te_3 increased the hole concentration while slightly decreasing the Seebeck coefficient, thus optimising the electrical transport properties of the bulk material. In addition, the second phases of MnSb_2Se_4 and Bi_(0.48)Sb_(1.52)Te_3 were observed in the Bi_(0.48)Sb_(1.52)Te_3 matrix. The nanoparticles in the semi-coherent second phase of MnSb_2Se_4 behaved as scattering centres for phonons,yielding a reduction in the lattice thermal conductivity. Substantial enhancement of the figure of merit, ZT, has been achieved for Bi_(0.48)Sb_(1.52)Te_3 by adding an Mn_(0.8)Cu_(0.2)Sb_2Se_4(2mol%) sample, for a wide range of temperatures, with a peak value of 1.43 at 375 K, corresponding to ~40% improvement over its Bi_(0.48)Sb_(1.52)Te_3 counterpart. Such enhancement of the thermoelectric(TE) performance of p-type Bi_2Te_3 based materials is believed to be advantageous for practical applications.  相似文献   

2.
In this work,we report that the thermoelectric properties of Bi_(0.52)Sb_(1.48)Te_3alloy can be enhanced by being composited with Mn Te nano particles(NPs)through a combined ball milling and spark plasma sintering(SPS)process.The addition of Mn Te into the host can synergistically reduce the lattice thermal conductivity by increasing the interface phononscattering between Bi_(0.52)Sb_(1.48)Te_3 and MnTe NPs,and enhance the electrical transport properties by optimizing the hole concentration through partial Mn~(2+)acceptor doping on the Bi~(3+)sites of the host lattice.It is observed that the lattice thermal conductivity decreases with increasing the percentage of Mn Te and milling time in a temperature range from 300 Kto 500 K,which is consistent with the increasing of interfaces.Meanwhile,the bipolar effect is constrained to high temperatures,which results in the figure of merit z T peak shifting toward higher temperature and broadening the z T curves.The engineering z T is obtained to be 20%higher than that of the pristine sample for the 2-mol%Mn Te-added composite at a temperature gradient of 200 K when the cold end temperature is set to be 300 K.This result indicates that the thermoelectric performance of Bi_(0.52)Sb_(1.48)Te_3 can be considerably enhanced by being composited with Mn Te NPs.  相似文献   

3.
李开跃  鲁勇  黄艳  邵晓红 《中国物理 B》2017,26(6):66103-066103
The electronic structure and thermoelectric(TE) properties of Mg_2Ge_xSn_(1-x)(x = 0.25, 0.50, 0.75) solid solutions are investigated by first-principles calculations and semi-classical Boltzmann theory. The special quasi-random structure(SQS) is used to model the solid solutions, which can produce reasonable band gaps with respect to experimental results.The n-type solid solutions have an excellent thermoelectric performance with maximum zT values exceeding 2.0, where the combination of low lattice thermal conductivity and high power factor(PF) plays an important role. These values are higher than those of pure Mg_2Sn and Mg_2Ge. The p-type solid solutions are inferior to the n-type ones, mainly due to the much lower PF. The maximum zT value of 0.62 is predicted for p-type Mg_2Ge_(0.25)Sn_(0.75) at 800K. The results suggest that the n-type Mg_2Ge_xSn_(1-x) solid solutions are promising mid-temperature TE materials.  相似文献   

4.
Nanocomposite is proved to be an effective method to improve thermoelectric performance.In the present study,graphene is introduced into p-type skutterudite La_(0.8)Ti_(0.1)Ga_(0.1)Fe_3CoSb_(12)by plasma-enhanced chemical vapor deposition(PECVD)method to form skutterudite/graphene nanocomposites.It is demonstrated that the graphene has no obvious effect on the electrical conductivity of La_(0.8)Ti_(0.1)Ga_(0.1)Fe_3CoSb_(12),but the Seebeck coefficient is slightly improved at high temperature,thereby leading to high power factor.Furthermore,due to the enhancement of phonon scattering by the graphene,the lattice thermal conductivity is reduced significantly.Ultimately,the maximum z T value of La_(0.8)Ti_(0.1)Ga_(0.1)Fe_3CoSb_(12)/graphene is higher than that of graphene-free alloy and reaches to 1.0 at 723 K.Such an approach raised by us enriches prospects for future practical application.  相似文献   

5.
黄平  游理  梁星  张继业  骆军 《物理学报》2019,68(7):77201-077201
层状氧硫族化合物由于其本征的低晶格热导率和可观的热电性能吸引了广泛关注,其中以BiCuSeO化合物的热电性能最为优异.但是,其同晶型化合物BiCuTeO,由于带隙较小且存在大量本征Cu空位,导致载流子浓度较高,热电性能较差,从而研究较少.针对BiCuTeO存在的上述问题,本文利用Se替代部分Te,以期能够展宽带隙并减少Cu空位,提高其热电性能.采用固相反应结合快速热压烧结制备了BiCuTe_(1-x)Se_xO(x=0, 0.1, 0.2, 0.3和0.4)块体热电材料,并系统地研究了该体系的电热输运性能.研究结果表明,利用Se替代Te,可以使BiCuTeO导电层化学键强度增加、带隙增大、载流子有效质量增加以及载流子散射增强,从而导致载流子浓度和迁移率同时降低,进而电导率随着Se含量增加而剧烈降低, Seebeck系数则显著增大.由于综合电输运性能恶化,功率因子随着Se含量增加而减小,导致热电优值zT随着Se含量增加而降低.最终,Se含量为x=0.1的样品,在室温和723 K时的zT值分别达到约0.3和0.7,仍然在较宽温区内保持较高的zT值.由于Se替代Te改变了BiCuTeO的能带结构,通过载流子浓度优化,有望进一步提高其热电性能.  相似文献   

6.
The electronic structure and thermoelectric(TE) properties of PbS_xTe_(1-x)(x = 0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann theory. The special quasirandom structure(SQS) method is used to model the solid solutions of PbS_xTe_(1-x), which can produce reasonable electronic structures with respect to experimental results. The maximum zT value can reach 1.67 for p-type PbS0.75Te0.25 and 1.30 for PbS0.5Te0.5 at 800 K, respectively. The performance of p-type PbS_xTe_(1-x) is superior to the n-type ones, mainly attributed to the higher effective mass of the carriers. The z T values for PbS_xTe_(1-x) solid solutions are higher than that of pure Pb Te and Pb S, in which the combination of low thermal conductivity and high power factor play important roles.  相似文献   

7.
The hole-concentration (x) dependence of the three-dimensional energy-momentum dispersion in (Bi, Pb)2(Sr, La)2CuO(6+delta) has been investigated by angle-resolved photoemission spectroscopy. For a heavily overdoped sample of T(c) < or = 0.5 K, an energy dispersion of approximately 10 meV in width is observed in the vicinity of the (pi, 0) point with varying momentum along the c axis (k(z)). This k(z) dispersion is zero for underdoped, optimally doped, and slightly overdoped samples up to a doping level corresponding to T(c) = 22 k. At higher doping levels we observe significant dispersion of the order of 10 meV (sample with T(c) < or = 0.5 K). This is clear evidence that at a doping value corresponding to T(c) = 22 K, a crossover from two- to three-dimensional electronic structure occurs.  相似文献   

8.
We have systematically studied the thermoelectric properties in Zn-doped Sn Te.Strikingly,band convergence and embedded precipitates arising from Zn doping,can trigger a prominent improvement of thermoelectric performance.In particular,the value of dimensionless figure of merit z T has increased by 100% and up to ~ 0.5 at 775 K for the optimal sample with 2% Zn content.Present findings demonstrate that carrier concentration and effective mass play crucial roles on the Seebeck coefficient and power factor.The obvious deviation from the Pisarenko line(Seebeck coefficient versus carrier concentration) due to Zn-doping reveals the convergence of valence bands.When the doping concentration exceeds the solubility,precipitates occur and lead to a reduction of lattice thermal conductivity.In addition,bipolar conduction is suppressed,indicating an enlargement of band gap.The Zn-doped Sn Te is shown to be a promising candidate for thermoelectric applications.  相似文献   

9.
Polycrystalline p-type Ag 0.9 Sb 1.1 x Mn x Te 2.05(x = 0.05,0.10,and 0.20) compounds have been prepared by a combined process of melt-quenching and spark plasma sintering.The sample composition of Ag 0.9 Sb 1.1 x Mn x Te 2.05 has been specially designed in order to achieve the doping effect by replacing part of Sb with Mn and to present the uniformly dispersed Ag 2 Te phase in the matrix by adding insufficient Te,which is beneficial for optimizing the electrical transport properties and enhancing the phonon scattering effect.All the samples have the NaCl-type structure according to our X-ray powder diffraction analysis.After the treatment of spark plasma sintering,only the sample with x = 0.20 has a small amount of MnTe 2 impurities.The thermal analysis indicates that a tiny amount of Ag 2 Te phase exists in all these samples.The presence of the MnTe 2 impurity with high resistance and high thermal conductivity leads to the deteriorative thermoelectric performance of the sample with x = 0.20 due to the decreased electrical transport properties and the increased thermal conductivity.In contrast,the sample with x = 0.10 exhibits enhanced thermoeletric properties due to the Mn-doping effect.A dimensionless thermoelectric figure of merit of 1.2 is attained for the sample with x = 0.10 at 573 K,showing promising thermoelectric properties in the medium temperature range.  相似文献   

10.
邹平  吕丹  徐桂英 《物理学报》2020,(5):182-189
采用高压烧结技术制备了稀土元素Tb掺杂的n型Bi2Te2.7Se0.3基纳米晶块体热电材料.将高压烧结成型的样品于633 K真空退火36 h.研究了Tb掺杂量对样品的晶体结构和热电性能的影响.结果表明,高压烧结制备的样品为纳米结构, Tb掺杂使样品的晶胞体积变大,功率因子增大,热导率降低,从而使ZT值提高.Tb掺杂量为x=0.004是最优的掺杂量,该掺杂量的高压烧结样品经退火处理后,于373 K时ZT值达到最大为0.99,并且在323-473 K范围内, ZT值均大于0.8,这对用于温差发电领域具有重要意义.  相似文献   

11.
Based upon ab initio electronic structure calculations for delafossite CuAlO2 and ZnO, we report on the design of new-functional materials for transparent conducting oxides (TCO), such as (i) low-resistive p-type ZnO and CuAlO2 by co-doping, (ii) high-efficiency thermoelectric power in CuAlO2 (ZT>3) by p-type doping, (iii) half-metallic ferromagnetism in transition-metal-impurity doped CuAlO2 and ZnO-based diluted magnetic semiconductors, and (iv) CaO, MgO, SrO and BaO based DMS without transition metal impurities. We also discuss the implementation of the self-interaction correction to our materials design method. PACS 61.72.Bb; 61.72.Jj; 71.15.Mb; 72.15.Jf; 82.75.-d  相似文献   

12.
The magnetotransport properties and magnetocaloric effects of the compound Mn_{1.95}Cr_{0.05}Sb_{0.95}Ga_{0.05} have been studied. With decreasing temperature, a spontaneous first-order magnetic phase transition from ferrimagnetic (FI) to antiferromagnetic (AF) state takes place at T_s=200K. A metamagnetic transition from the AF to FI state can be induced by an external field, accompanied by a giant magnetoresistance effect of 57%. The magnetic entropy changes are determined from the temperature and field dependence of the magnetization using the thermodynamic Maxwell relation. Mn_{1.95}Cr_{0.05}Sb_{0.95}Ga_{0.05} exhibits a negative magnetocaloric effect, and the absolute values of ΔS_M^{max}(T,ΔH) are 4.4, 4.1, 3.6, 2.8 and 1.5 J/(kg·K) for magnetic field changes of 0-5T, 0-4T, 0-3T, 0-2T and 0-1T, respectively.  相似文献   

13.
张奇  孙恒达  朱美芳 《中国物理 B》2022,31(2):28506-028506
Organic thermoelectric(OTE)materials have been regarded as a potential candidate to harvest waste heat from complex,low temperature surfaces of objects and convert it into electricity.Recently,n-type conjugated polymers as organic thermoelectric materials have aroused intensive research in order to improve their performance to match up with their ptype counterpart.In this review,we discuss aspects that affect the performance of n-type OTEs,and further focus on the effect of planarity of backbone on the doping efficiency and eventually the TE performance.We then summarize strategies such as implementing rigid n-type polymer backbone or modifying conventional polymer building blocks for more planar conformation.In the outlook part,we conclude forementioned devotions and point out new possibility that may promote the future development of this field.  相似文献   

14.
朱岩  张新宇  张素红  马明臻  刘日平  田宏燕 《物理学报》2015,64(7):77103-077103
本文基于第一性原理采用全电势线性缀加平面波方法和波尔兹曼理论运算了在静水压下Mg2Si的电子和热电性能. 研究发现, 对于n型载流子控制Mg2Si输运性质, 应变达到0.02时, 室温情况下, 热电性能参数得到了明显提高, 其塞贝克系数增幅为26%, 功率因数增幅47%; 高温时, 功率因数增幅45%. 而对于主要载流子为空穴时, 其热电系数最值出现在应变为0.01时. 但其数值与未施加静水压的结构相比提高不多, 表明对于p型Mg2Si半导体应变对其输运性能的影响不大. 并且结合电子能带结构图解释这些现象.  相似文献   

15.
This paper introduces a new method to selectively fabricate n-type and p-type bismuth (Bi)-telluride (Te) thermoelectric materials by the rate of addition of ethylene glycol (EG) in the Bi–Te co-electrodeposition solution. As the amount of added EG is increased, the atomic ratio of Bi in the deposited Bi–Te alloy reached a slope of 0.463 (at.% of Bi/vol.% of EG), and increased in a linear manner. When the EG content reached approximately 20%v/v, the n-type material changed into a p-type. This change implies that adjusting the EG content in the electrodeposition solution affords simple control of the Bi–Te composition. To demonstrate the applicability of the developed thermoelectric materials, thermoelectric generators (TEGs) were fabricated using electrodeposited n-type (using solution without EG) and p-type (using solution with 30%v/v EG) Bi–Te alloys. The Seebeck voltage of the pair of n-type and p-type thermoelectric materials was 140 mV and the power generated from the pair was 24.36 nW at a 10 °C temperature difference.  相似文献   

16.
Pei Zhang 《中国物理 B》2021,30(12):128401-128401
Using first-principles calculations combined with the Boltzmann transport theory, we explore the thermoelectric properties of natural superlattice (SL) structure Sb2Te. The results show that n-type Sb2Te possesses larger Seebeck coefficient of 249.59 (318.87) μV/K than p-type Sb2Te of 219.85 (210.38) μV/K and low lattice thermal conductivity of 1.25 (0.21) W/mK along the in-plane (out-of-plane) direction at 300 K. The excellent electron transport performance is mainly attributed to steeper density of state around the bottom of conduction band. The ultralow lattice thermal conductivity of Sb2Te is mainly caused by low phonon group velocity and strong anharmonicity. Further analysis shows that the decrease of group velocity comes from flatter dispersion curves which are contributed by the Brillouin-zone folding. The strong anharmonicity is mainly due to the presence of lone-pair electrons in Sb2Te. Combining such a high Seebeck coefficient with the low lattice thermal conductivity, maximum n-type thermoelectric figure of merit (ZT) of 1.46 and 1.38 could be achieved along the in-plane and out-of-plane directions at room temperature, which is higher than the reported values of Sb2Te3. The findings presented here provide insight into the transport property of Sb2Te and highlight potential applications of thermoelectric materials at room temperature.  相似文献   

17.
The intensive reduced efficiency eta(r) is derived for thermoelectric power generation (in one dimension) from intensive fields and currents, giving eta(r)=(E x J) divided by (- inverted Delta)T x J(S). The overall efficiency is derivable from a thermodynamic state function, Phi=1 divided by u + alphaT, where we introduce u=J divided by kappa (inverted Delta)T as the relative current density. The method simplifies the computation and clarifies the physics behind thermoelectric devices by revealing a new materials property s=(sqrt[1+zT]-1) divided by (alphaT), which we call the compatibility factor. Materials with dissimilar compatibility factors cannot be combined by segmentation into an efficient thermoelectric generator because of constraints imposed on u. Thus, control of the compatibility factor s is, in addition to z, essential for efficient operation of a thermoelectric device, and thus will facilitate rational materials selection, device design, and the engineering of functionally graded materials.  相似文献   

18.
Practical realization of near room temperature (230–300 K) longwavelength (5–12 μm) photovoltaic detectors is reported. The devices are epitaxial n+ip photodiodes operated at ambient temperature or with a simple, two-stage thermoelectric cooling. The performance of the photodiodes has been improved by the use optimized composition and doping profile structures. The tunnel currents were minimized by interfacing the n+ and p-type layers with a thin (0.5 μm) lightly doped i-region. The quantum efficiency has been increased by the use of backside reflector. Further improvement of performance was achieved by the use of monolithic optical immersion. Large area devices with useful performance were obtained by the use of small close-spaced elements connected in series. The near room temperature photovoltaic detectors are of particular significance for very low and very high frequency applications.  相似文献   

19.
制备工艺对p型碲化铋基合金热电性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
蒋俊  李亚丽  许高杰  崔平  吴汀  陈立东  王刚 《物理学报》2007,56(5):2858-2862
利用区熔法、机械合金化、放电等离子烧结(SPS)技术、热压法等多种工艺制备了p型碲化铋基热电材料.在300—500K的温度范围内测量了各热电性能参数,包括电导率(σ)、塞贝克系数(α)和热导率(κ),研究了制备工艺对热电性能的影响.结果表明,所制备的块体材料与同组成区熔晶体相比,性能优值ZT均有不同程度的提高.其中,利用区熔法结合SPS技术可获得热电性能最佳的块体材料,其ZT值达1.15. 关键词: 碲化铋 放电等离子烧结 区熔法 热电性能  相似文献   

20.
During waste heat recovery applications, thermoelectric (TE) materials experience thermal gradients and thermal transients, which produce stresses that scale with the TE material's coefficient of thermal expansion (CTE). Thus, the temperature-dependent CTE is an important parameter for the design of mechanically robust TE generators. For three skutterudite thermoelectric compositions, n-type Co0.95Pd0.05Te0.05Sb3 (with and without 0.1 at. % cerium doping) and p-type Ce0.9Fe3.5Co0.5Sb12, the CTE was measured using two methods, i.e. X-ray diffraction on powder and bulk specimens and dilatometry on bulk specimens. Each bulk specimen was hot pressed using powders milled from cast ingots. Between 300?K and 600?K, the mean CTE values were 9.8–10.3?×?10?6 K?1 for the non-cerium-doped n-type, 11.6?×?10?6 K?1 for the 0.1 at. % cerium-doped n-type and from 12.7 to 13.3?×?10?6 K?1 for the p-type. In the literature, similar CTE values are reported for other Sb-based skutterudites. For temperatures >600?K, an unrecovered dilatational strain (perhaps due to bloating) was observed, which may impact applications. Also, the submicron particle sizes generated by wet milling were pyrophoric; thus, during both processing and characterization, exposure of the powders to oxygen should be limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号