首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
物理学   2篇
  2018年   1篇
  2017年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
李开跃  鲁勇  黄艳  邵晓红 《中国物理 B》2017,26(6):66103-066103
The electronic structure and thermoelectric(TE) properties of Mg_2Ge_xSn_(1-x)(x = 0.25, 0.50, 0.75) solid solutions are investigated by first-principles calculations and semi-classical Boltzmann theory. The special quasi-random structure(SQS) is used to model the solid solutions, which can produce reasonable band gaps with respect to experimental results.The n-type solid solutions have an excellent thermoelectric performance with maximum zT values exceeding 2.0, where the combination of low lattice thermal conductivity and high power factor(PF) plays an important role. These values are higher than those of pure Mg_2Sn and Mg_2Ge. The p-type solid solutions are inferior to the n-type ones, mainly due to the much lower PF. The maximum zT value of 0.62 is predicted for p-type Mg_2Ge_(0.25)Sn_(0.75) at 800K. The results suggest that the n-type Mg_2Ge_xSn_(1-x) solid solutions are promising mid-temperature TE materials.  相似文献   
2.
The electronic structure and thermoelectric(TE) properties of PbS_xTe_(1-x)(x = 0.25, 0.5, and 0.75) solid solution have been studied by combining the first-principles calculations and semi-classical Boltzmann theory. The special quasirandom structure(SQS) method is used to model the solid solutions of PbS_xTe_(1-x), which can produce reasonable electronic structures with respect to experimental results. The maximum zT value can reach 1.67 for p-type PbS0.75Te0.25 and 1.30 for PbS0.5Te0.5 at 800 K, respectively. The performance of p-type PbS_xTe_(1-x) is superior to the n-type ones, mainly attributed to the higher effective mass of the carriers. The z T values for PbS_xTe_(1-x) solid solutions are higher than that of pure Pb Te and Pb S, in which the combination of low thermal conductivity and high power factor play important roles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号