首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用基于第一性原理的密度泛函理论系统研究了染料分子中的-CN,-NH2,-OH,-COOH和-SH这5种固定基团在ZnO(10-1 0)表面的吸附,分析了它们在ZnO(10-1 0)表面上的吸附机制.结果表明:5种基团在ZnO(10-1 0)表面都发生了化学吸附,其中-CN、-NH2和-OH发生了非解离吸附,-COOH和-SH则是表面解离吸附.5种固定基团的吸附能分别是:-0.64eV,-1.28eV,-1.03eV,-1.21eV(-1.40eV)和-1.14eV.综上所述,以-COOH为固定基团的染料分子制备的染料敏化太阳能电池(DSSCs)具有更稳定的性能,这为ZnO染料敏化太阳能电池的设计和应用提供了理论基础.  相似文献   

2.
王乐  刘阳  徐国堂  李晓艳  董前民  黄杰  梁培 《物理学报》2012,61(6):63103-063103
ZnO纳米线作为新型太阳能电池结构的重要组成部件之一, 其导电能力直接影响到太阳能电池的性能. 采用密度泛函理论平面波超软赝势方法, 计算并分析了C2H6O(乙醇)、 C6H5FS(4-氟苯硫酚)、 C7HF7S(4-(三氟甲基L)-2, 3, 5, 6-四氟硫代苯酚) 等小分子吸附的六边形结构\langle0001angle ZNWs (ZnO 纳米线) 的几何结构、 吸附能和电子结构. 首先, 通过几何优化得到了不同基团吸附的ZNWs的稳定结构, 同时吸附能计算结果表明C7HF7S吸附的体系结构最为稳定, 且吸附呈现放热反应; 其次, 为研究表面敏化对导电性能的影响, 计算了不同小分子基团吸附下的能带结构和态密度, 并利用能带理论分析了表面吸附敏化对禁带宽度的调控机理, 结果分析表明小分子表面吸附敏化对ZNWs的电学性能有一定的影响, 其中C7H7FS和C6H5FS分子均发生了不同程度的电荷转移.  相似文献   

3.
基于密度泛函理论的第一性原理计算方法,研究了H2O分子在五边形BCN上的吸附与解离过程.研究结果表明,五边形BCN结构的B原子是H2O分子的最稳定的活性吸附位点. H2O分子在该活性位点极易解离,其初步解离过程为放热反应且分解势垒仅为0.191 eV,并形成稳定的OH/H产物.深入研究发现,H2O分子初步解离后的五边形BCN表面,可直接分解后续吸附的H2O分子.该研究结果为五边形BCN对H2O分子的吸附解离机制提供理论借鉴.  相似文献   

4.
基于密度泛函理论的第一性原理计算方法,研究了H2S分子在五边形BCN上的吸附与解离过程. 研究结果表明,五边形BCN结构的B原子是H2S分子的最稳定的活性吸附位点. H2S分子在该活性位点极易解离,其初步解离过程为放热反应且分解势垒仅为0.208 eV,并形成稳定的HS/H产物. 深入研究发现,H2S分子初步解离后的五边形BCN表面,可直接分解后续吸附的H2S分子. 该研究结果为五边形BCN对H2S分子的吸附解离机制提供理论借鉴,并且首次提出五边形BCN可作为功能性材料净化有害气体H2S的理想候选者.  相似文献   

5.
运用密度泛函理论,对H2O在Yn (n=2-8) 团簇表面的分子吸附与解离吸附两种模式进行了结构优化,电子性质分析。结果表明:分子吸附中H2O倾向于O端吸附于Y-Y原子桥位,而解离吸附中H2O解离的H, O原子倾向于吸附于Yn团簇的面位。两种吸附模式都导致了(解离吸附n=4, 5除外)主团簇Y原子平均键长增大。分子吸附和解离吸附的吸附强度和化学活性都随尺寸增加而增大。解离吸附中体系的稳定性明显高于分子吸附,且与体系的电子壳层效应密切相关。  相似文献   

6.
运用密度泛函理论,对H2O在Yn (n=2-8) 团簇表面的分子吸附与解离吸附两种模式进行了结构优化,电子性质分析。结果表明:分子吸附中H2O倾向于O端吸附于Y-Y原子桥位,而解离吸附中H2O解离的H, O原子倾向于吸附于Yn团簇的面位。两种吸附模式都导致了(解离吸附n=4, 5除外)主团簇Y原子平均键长增大。分子吸附和解离吸附的吸附强度和化学活性都随尺寸增加而增大。解离吸附中体系的稳定性明显高于分子吸附,且与体系的电子壳层效应密切相关。  相似文献   

7.
采用了第一性原理研究了H2S在Cr(111)面的吸附解离过程,利用吸附能、吸附构型和偏态密度图(PDOS)研究了H2S及其解离产物在Cr(111)面上的吸附情况,都偏向倾斜吸附在Cr(111)面.同时研究了HS/H和S/H共吸附情况,得到共吸附物质在Cr(111)面上有明显的相互作用.最后使用线性同步和二次同步变换方法确定了解离反应的过渡态,了解到第一、二步解离的活化能分别为1.65 eV、0.82 eV,H2S分子在Cr(111)面上的解离过程是放热反应,反应能为-2.90 eV.  相似文献   

8.
Pu(100)表面吸附CO2的密度泛函研究   总被引:1,自引:0,他引:1       下载免费PDF全文
蒙大桥  罗文华  李赣  陈虎翅 《物理学报》2009,58(12):8224-8229
采用广义梯度密度泛函理论的改进Perdew-Burke-Ernzerh方法结合周期性层晶模型,研究了CO2分子在Pu(100)面上的吸附和解离.吸附能和几何构型的计算表明,CO2以穴位C4O4构型吸附最为有利,吸附能为1.48 eV.布居分析和态密度分析表明,CO2与Pu表面相互作用的本质主要是CO2分子的杂化轨道2πμ与Pu5f,Pu6d,Pu7s轨道通过强电子转移和弱重叠杂化的方式相互作用而生成了新的化学键.计算的CO2→CO+O解离能垒为0.66 eV,解离吸附能为2.65 eV, 表明在一定热激活条件下CO2分子倾向于发生解离性吸附.O2,H2,CO和CO2在Pu (100)面吸附的比较分析表明,较低温度下的吸附强度顺序依次为O2,CO,CO2,H2;较高温度下的吸附强度顺序依次为O2,CO2,CO,H2. 关键词: 密度泛函理论 Pu (100) 2')" href="#">CO2 吸附和解离  相似文献   

9.
李文杰  杨慧慧  陈宏善 《物理学报》2013,62(5):53601-053601
利用高精度从头计算方法研究了H2分子在Al7-阴离子团簇上的吸附及解离过程, 确定了分子吸附及解离吸附的稳定结构,并分析了各结构的光电子能谱. 计算表明H2在Al7-上为弱的物理吸附,吸附能约为0.02 eV;解离过程的能垒约为0.75 eV. 对团簇及解离吸附结构的态密度与实验得到的光电子能谱的比较表明二者能够很好地符合, 确定H2与激光烧蚀产生的团簇直接反应时能在Al7-上发生解离. 关键词: 7-')" href="#">Al7- 2')" href="#">H2 解离吸附 从头计算  相似文献   

10.
陈玉红  杜瑞  张致龙  王伟超  张材荣  康龙  罗永春 《物理学报》2011,60(8):86801-086801
采用第一性原理方法研究了H2分子在Li3N(110)晶面的表面吸附. 通过研究H2/Li3N(110)体系的吸附位置、吸附能和电子结构发现: H2分子吸附在N桥位要比吸附在其他位置稳定,此时在Li3N(110)面形成两个-NH基,其吸附能为1.909 eV,属于强化学吸附;H2与Li3N(110)面的相互作用主要是H 1s轨道与N 关键词: 第一性原理 3N(110)')" href="#">Li3N(110) 2')" href="#">H2 吸附和解离  相似文献   

11.
徐敬 《物理学报》2006,55(3):1107-1112
建立了基于分子力学计算方法的分子模拟手段,用于研究羟基乙叉二膦酸(HEDP)在方解石{104}表面的吸附特性.分子模拟三维吸附图像显示,HEDP中的膦酸基团中的氧原子具有强烈的负电性,能与晶体表面的阳离子产生强烈的静电吸引作用,形成“立体匹配”吸附结构.计算结果显示,HEDP在方解石面上、台阶和扭折点位置的平均吸附能依次约为-5.2eV,-7.0eV和-23.5eV,表明HEDP强烈地吸附到扭折点位置上,从而影响和抑制台阶的生长. 关键词: 分子模拟 方解石 阻垢剂 表面吸附  相似文献   

12.
采用基于第一性原理的密度泛函理论结合周期模型方法对甲醇在Pt(100)完整表面的吸附与解离进行了研究. 通过比较不同吸附位置的吸附能与构型参数发现,表面top吸附位为最稳定吸附位,甲醇分子通过氧原子吸附于Pt(100)表面. 同时计算了甲醇分子在top吸附位可能的解离路径,发现在解离过程中OH键首先断裂的路径为最低能量路径. 分解生成的若干产物其吸附稳定性排序为CH3O>CH2OH>CH3>CH2O.  相似文献   

13.
H_2在Ni,Pd与Cu表面的解离吸附   总被引:1,自引:0,他引:1       下载免费PDF全文
孙强  谢建军  张涛 《物理学报》1995,44(11):1805-1813
用EAM方法(embeded-atommethod)研究H_2在Ni,Pd与Cu的(100),(110)与(111)面上的解离吸附.首先通过拟合单个H原子在Ni,Pd与Cu不同表面上的吸附能和吸附键长,得到H与这些金属表面相互作用的EAM势,然后计算H_2在这些表面上以不同方式进行解离吸附时的活化势垒E_a,吸附热q_(ad)与吸附键长R.并给出H_2在(110)面上解离吸附的势能曲线.计算结果表明H_2的解离吸附与衬底种类、衬底表面取向及解离方式有关.H_2在Ni表面上解离时活化势垒很低,而在Cu表面解 关键词:  相似文献   

14.
以Ni和Cu原子中心替换的二十面体Al12X(X=Ni、Cu)团簇为基体、采用密度泛函理论系统计算研究了H原子及H2分子在团簇表面的吸附,并对比了纯Al13团簇对H及H2的吸附,结果表明:相对于纯Al13中H原子的桥位吸附、掺杂团簇Al12X(X=Ni、Cu)中H原子均吸附于团簇顶位;无论是吸附H原子还是H2分子,Al12Ni的几何结构均发生大的畸变;相较H2在纯Al13团簇表面的解离吸附,H2在掺杂团簇Al12X(X=Ni、Cu)表面的解离反应过程中反应能均增大、势垒均降低,这表明掺杂团簇Al12X(X=Ni、Cu)相较纯Al13团簇更有利于H2解离吸附的发生。  相似文献   

15.
染料敏化纳米ZnO薄膜太阳电池机理初探   总被引:8,自引:0,他引:8       下载免费PDF全文
讨论利用ZnO代替TiO2作为光阳极制作染料敏化薄膜太阳电池的可行性.使用LSV法,IR光谱和UV-vis光谱探讨了电池的工作机理和性能,并与染料敏化纳米TiO2薄膜太阳电池作了比较.结果发现ZnO薄膜表面与染料的吸附键合力太弱是导致ZnO太阳电池效率低下的主要原因. 关键词: 纳米ZnO 太阳电池 染料敏化 量子效率  相似文献   

16.
运用含时波包法(time-dependent wave packet method),对CH4和CD4在光滑静止的Ni(100)表面的解离吸附进行了量子动力学研究与计算.不同振动态下解离几率随平动能的变化曲线表明,反应分子的振动能对分子的解离有重要贡献,其反应趋势,与其它理论模型得到的结果一致.CH4与CD4解离几率的对数随平动能的变化曲线表明,CH4的解离几率比CD4的要高得多,这种同位素效应,是由它们不同的零点能和量子隧道效应引起的,且与实验结果符合得比较好.  相似文献   

17.
采用基于密度泛函理论的第一性原理方法研究了氢原子和氢分子在纯铁表面和锰原子掺杂表面的吸附与解离行为.研究结果表明,氢原子可在纯铁(001)表面稳定吸附,吸附能按照顶位,桥位和心位依次增强;而溶质原子锰降低了氢原子距离表面的位置并强化了氢原子的吸附行为.氢分子在纯铁表面的吸附解离行为取决于氢分子距离模型表面的初始距离和初始空间构型.氢分子平行于纯铁(001)表面时,距离心位1.2?发生解离,而桥位、顶位均不会发生解离;氢分子垂直放置时,距离桥位0.6?、顶位1.0?发生解离,心位不会发生解离.氢分子平行于锰掺杂纯铁(001)表面时,距离桥位0.6?、顶位0.7?、心位1.2?发生解离;氢分子垂直放置时,距离桥位、心位0.8?发生解离,而顶位放置氢分子不发生解离.归纳可知,锰溶质原子掺杂会增加铁基体表面氢原子和氢分子的吸附作用并促进氢分子发生分解.  相似文献   

18.
利用密度泛函理论研究了0.25单层(ML),0.5ML,0.75ML和1ML吸附率下H2O在SrTiO3-(001)TiO2表面上的吸附行为.比较了不同吸附率下分子吸附和解离吸附的稳定性,利用微动弹性带(nudged elastic band)方法计算了H2O的解离势垒.结果表明:在低吸附率(0.25ML和0.5ML)时,H2O表现为解离吸附;在0.75ML吸附率下,分子吸附和解离吸附同时存在;而在全吸附(吸附率为1ML)时,分子吸附更稳定.基于对H2O分子与表面之间以及H2O分子之间的电荷转移和相互作用的分析,讨论了吸附率对H2O吸附和解离的影响.  相似文献   

19.
N2的解离化学吸附是工业合成氨的速控步骤. 基于最近构建的六维势能面,本文研究了N2的初始振动激发和转动激发在Fe(111)表面的反应性的作用. 由于该反应具有重要的量子效应,通过六维量子动力学计算研究了入射能量低于1.6 eV 时振动激发的效应. 并采用准经典轨线计算揭示了高入射能量下的振动和转动激发的影响. 通过这些研究发现增加平动能量在一定程度上能提高解离几率,振动激发或转动激发能更有效地促进解离. 这项研究为重原子分子-表面反应的模式特异性动力学提供了有价值的见解.  相似文献   

20.
本文采用静电自组装的方法制备了二维纳米银膜。UV-vis吸收光谱显示其等离子体共振吸收带位于400+900nm的光谱范围,延伸到了近红外区,可以较好的匹配785nm的近红外激发光源。以该纳米银膜为基底,对2-氨基苯硫酚(2-ATP)分子进行了近红外表面增强拉曼散射(NIR-SERS)检测,获得了重复性良好的NIR-SERS光谱图。实验表明:以2-ATP为探针分子时,该纳米银膜的NIR-SERS增强因子达到2.19×109。同时,本文采用密度泛函理论(DFT),以B3LYP/6-31G为基函数,对2-ATP分子进行结构优化和普通拉曼光谱(NR)计算,发现理论值和实验值吻合较好。此外,对2-ATP的NIR-SERS谱带进行了归属分析,发现当2-ATP分子在纳米银表面吸附时,是以-SH基团吸附到银表面,且同时-SH基团会被纳米银氧化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号