首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The residual stress (RS) field in ceramic–metal diffusion bonds has been studied by spatial-resolved neutron strain scanning. Strain profiles were directly determined by neutron diffraction along selected lines perpendicular to the bonding interface of cube-shaped Ni/Si3N4 specimens. Finite element method (FEM) calculations were carried out to simulate the joining process and residual strains have been obtained among the whole body of specimens. The simulations were validated by comparison with the experimental strain data obtained by neutron and (previous) X-ray diffraction along some particular line of the specimen. Finally, the RS field across the whole sample was obtained from the FEM-calculated strain field, showing that neutron strain scanning combined with FEM analysis is a very useful technique to study the RS map in silicon nitride–metal diffusion bonds at both sides of the joining interface. Maxima of the axial stress were found at the lateral surface and close to the joining interface, being tensile for both ceramic and nickel. On the other hand, the largest radial stress at the joining interface was found at the centre of the specimen on the ceramic side. From the point of view of FEM analysis, it is shown that in order to simulate the joining process of nickel and silicon nitride, nickel must be considered as a ductile material having strain hardening and Si3N4 must be considered as purely elastic material having a nearly temperature-independent elastic modulus.  相似文献   

2.
通过直流磁控反应溅射装置,在蓝宝石(0001)衬底和氮化的蓝宝石(0001)衬底上成功制备了氮化铝(AIN)薄膜。利用X射线衍射仪、原子力学显微镜和双光束扫描分光计,研究了蓝宝石氮化对AIN薄膜结构、应力、晶粒尺寸、形貌和光学性质的影响。X射线衍射研究表明:制备的AIN薄膜具有较强的(0002)择优取向,蓝宝石衬底的氮化不仅能够改善AIN结晶质量,而且还可以减少薄膜的残余应力。但是,原子力学显微镜结果表明:在蓝宝石衬底上制备的AIN薄膜的晶粒大小分布比在氮化的蓝宝石衬底上制备的AIN薄膜的晶粒大小分布更加均匀。我们认为,蓝宝石衬底在氮化的过程中形成的AIN具有过多的位错和缺陷,正是这些位错和缺陷造成了在氮化的蓝宝石衬底上制备的AIN薄膜的晶粒大小分布的不均匀性。吸收光谱显示:蓝宝石衬底的氮化并没有对AIN薄膜的光学性质产生明显的改善。  相似文献   

3.
Ti films with a thickness of 1.6 μm (group A) and 4.6 μm (group B) were prepared on surface of silicon crystal by metal vapor vacuum arc (MEVVA) ion implantation combined with ion beam assisted deposition (IBAD). Different anneal temperatures ranging from 100 to 500 °C were used to investigate effect of temperature on residual stress and mechanical properties of the Ti films. X-ray diffraction (XRD) was used to measure residual stress of the Ti films. The morphology, depth profile, roughness, nanohardness, and modulus of the Ti films were measured by scanning electron microscopy (SEM), scanning Auger nanoprobe (SAN), atomic force microscopy (AFM), and nanoindentation, respectively. The experimental results suggest that residual stress was sensitive to film thickness and anneal temperature. The critical temperatures of the sample groups A and B that residual stress changed from compressive to tensile were 404 and 428 °C, respectively. The mean surface roughness and grain size of the annealed Ti films increased with increasing anneal temperature. The values of nanohardness and modulus of the Ti films reached their maximum values near the surface, then, reached corresponding values with increasing depth of the indentation. The mechanism of stress relaxation of the Ti films is discussed in terms of re-crystallization and difference of coefficient of thermal expansion between Ti film and Si substrate.  相似文献   

4.
Combination of pulsed laser ablation with electron cyclotron resonance microwave discharge was demonstrated for a novel method for low-temperature thin film growth. Aluminum nitride thin films were synthesized on silicon substrates at temperatures below 80 °C by means of reactive pulsed laser deposition in nitrogen plasma generated from the electron cyclotron resonance discharge. The synthesized films show a very smooth surface and were found to have a stoichiometric AlN composition. X-ray photoelectron spectroscopy analysis evidenced the formation of aluminum nitride compound. Fourier transform infrared spectroscopy revealed the characteristic phonon modes of AlN. The AlN films were observed to be highly transparent in the visible and near-IR regions and have a sharp absorption edge near 190 nm. The band gap of the synthesized AlN films was determined to be 5.7 eV. The mechanisms responsible for the low-temperature film synthesis are also discussed in the paper. The nitrogen plasma facilitates the nitride formation and enhances the film growth. Received: 17 March 2000 / Accepted: 28 March 2000 / Published online: 23 May 2001  相似文献   

5.
研究了图形硅衬底上外延生长的氮化镓(GaN)基发光二极管(LED)薄膜、去除硅衬底后的无损自由状态LED薄膜以及去除氮化铝(AlN)缓冲层后的自由状态LED薄膜单个图形内的微区光致发光(PL)性能, 用荧光显微镜与扫描电镜观测了去除AlN缓冲层前后LED薄膜断面弯曲状况的变化. 研究结果表明: 1)去除硅衬底后, 自由支撑的LED薄膜朝衬底方向呈柱面弯曲状态, 且相邻图形的柱面弯曲方向不一致, 当进一步去除AlN缓冲层后薄膜会由弯曲变为平整; 2)LED薄膜在去除硅衬底前后同一图形内不同位置的PL谱具有显著差异, 而当去除AlN缓冲层后不同位置的PL谱会基本趋于一致; LED薄膜每一位置的PL 谱在去除硅衬底后均出现明显红移, 进一步去除AlN缓冲层后PL谱出现程度不一的微小蓝移; 3)自由支撑的LED薄膜去除AlN缓冲层后, PL光强随激光激发密度变化的线性关系增强, 光衰减得到改善.  相似文献   

6.
Al-C-N thin films with different Al contents were deposited on Si (1 0 0) substrates by closed-field unbalanced reactive magnetron sputtering in the mixture of argon and nitrogen gases. These films were subsequently vacuum-annealed at 700 °C and 1000 °C, respectively. The microstructures of as-deposited and annealed films were characterized by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM); while the hardness and elastic modulus values were measured by nano-indention method. The results indicated that the microstructure of both as-deposited and annealed Al-C-N films strongly depended on Al content. For thin films at low Al content, film delamination rather than crystallization occurred after the sample was annealed at 1000 °C. For thin films at high Al content, annealing led to the formation of AlN nanocrystallites, which produced nanocomposites of AlN embedded into amorphous matrices. Both the density and size of AlN nanocrystallites were found to decrease with increasing depth from the film surface. With increasing of annealing temperature, both hardness and elastic modulus values were decreased; this trend was decreased at high Al content. Annealing did not change elastic recovery property of Al-C-N thin films.  相似文献   

7.
Analysis of the bending modulus of individual silicon nitride nanobelts in elastic regime is reported here. The nanobelts have the size between 200∼800 nm in width, and thickness 20∼50 nm. Atomic force microscopy was used to image and to perform measurements of force versus bending displacement on individual nanobelts suspending over strips. The bending modulus Eb is deduced by comparison of the measured force curves on the substrate and on the suspending nanobelts. It is shown that the elastic modulus of the silicon nitride nanobelts is about 570 GPa, which is much larger than that of bulk and film of the silicon nitride material. The larger elastic modulus is ascribed to the fact there are less structural defects in the silicon nitride nanobelts. PACS 81.70.Bt; 81.40.Lm; 61.80.+g  相似文献   

8.
氮化铝薄膜的硅热扩散掺杂研究   总被引:1,自引:1,他引:0       下载免费PDF全文
采用热扩散方法,对AlN薄膜进行了Si掺杂。利用电子能量散射谱(EDS)以及高温变温电导对薄膜进行了分析。EDS测试结果表明:在1 250 ℃的温度下,氮化硅(SiNx)作为Si的扩散源,可以实现对AlN薄膜的Si热扩散掺杂。高温电流-电压(I-V)测试表明:在460 ℃测试温度下,AlN薄膜在热扩散掺杂以后,其电导从1.9×10-3 S·m-1增加到2.1×10-2 S·m-1。高温变温电导测试表明:氮空位(V3+N)和Si在AlN中的激活能为1.03 eV和0.45 eV。  相似文献   

9.
The structural and mechanical properties of gallium oxide films grown on silicon crystallographic planes (001), (011), and (111) with a buffer layer of silicon carbide are investigated. Nanoindentation was used to study the elastoplastic properties of gallium oxide and also to determine the elastic recovery parameter of the films under study. The tensile strength, hardness, elasticity tensor, compliance tensor, Young’s modulus, Poisson’s ratio, and other characteristics of gallium oxide were calculated using quantum chemistry methods. It was found that the gallium oxide crystal is auxetic because, for some stretching directions, the Poisson’s ratio takes on negative values. The calculated values correspond quantitatively to the experimental data. It is concluded that the elastoplastic properties of gallium oxide films approximately correspond to the properties of bulk crystals and that a change in the orientation of the silicon surface leads to a significant change in the orientation of gallium oxide.  相似文献   

10.
热应力对非制冷红外焦平面微桥的影响及控制研究   总被引:4,自引:2,他引:2  
非制冷红外焦平面阵列的微桥结构在微加工工艺中,由于温度的剧烈变化,在薄膜中产生热应力而引起微桥的变形,将对器件产生不利影响.利用有限元分析方法,对微桥在热应力作用下产生的变形进行了分析,提出了两种控制热应变的途径:1)选择一种低热膨胀系数、低杨氏模量的电极材料;2)在电极材料的表面沉积一层SiNx薄膜.仿真结果表明,两...  相似文献   

11.
We report in this study the mechanical, structural and compositional characteristics of amorphous carbon nitride films (a-CNx) deposited on Si(100) using RF magnetron sputtering of graphite targets in pure nitrogen and under different RF powers. The properties of the films were determined in their as deposited state using nuclear reaction analysis (NRA), elastic recoil detection (ERDA), infrared (IR) absorption and Raman spectroscopy. The mechanical properties were obtained combining nanoindentation and residual stress measurements. The presence of various types of C-N bonds, as well as the post-deposition contamination of the deposited films by oxygen and water (voids) is revealed. The measured hardness and Young modulus were 0.9-2.03 and 23-27 GPa, respectively. These results have been analysed in term of the matrix flexibility which results from the nitrogen content and the porous character of the films, which can affect deeply the estimation of the physical-mechanical properties of the films.  相似文献   

12.
Raman scattering studies were performed on hot-wall chemical vapor deposited (heteroepitaxial) silicon carbide (SiC) films grown on Si substrates with orientations of (1 0 0), (1 1 1), (1 1 0) and (2 1 1), respectively. Raman spectra suggested that good quality cubic SiC single crystals could be obtained on the Si substrate, independent of its crystallographic orientation. Average residual stresses in the epitaxially grown 3C-SiC films were measured with the laser waist focused on the epilayer surface. Tensile and compressive residual stresses were found to be stored within the SiC film and in the Si substrate, respectively. The residual stress exhibited a marked dependence on the orientation of the substrate. The measured stresses were comparable to the thermal stress deduced from elastic deformation theory, which demonstrates that the large lattice mismatch between cubic SiC and Si is effectively relieved by initial carbonization. The confocal configuration of the optical probe enabled a stress evaluation along the cross-section of the sample, which showed maximum tensile stress magnitude at the SiC/Si interface from the SiC side, decreasing away from the interface in varied rate for different crystallographic orientations. Defocusing experiments were used to precisely characterize the geometry of the laser probe in 3C-SiC single crystal. Based on this knowledge, a theoretical convolution of the in-depth stress distribution could be obtained, which showed a satisfactory agreement with stress values obtained by experiments performed on the 3C-SiC surface.  相似文献   

13.
The development of devices made of micro- and nano-structured thin film materials has resulted in the need for advanced measurement techniques to characterize their mechanical properties. Photoacoustic techniques, which use pulsed laser irradiation to nondestructively induce very high frequency ultrasound in a test object via rapid thermal expansion, are suitable for nondestructive and non-contact evaluation of thin films. In this paper, we compare two photoacoustic techniques to characterize the mechanical parameters of edge-supported aluminum and silicon nitride double-layer thin films. The elastic properties and residual stresses in such films affect their mechanical performance. In a first set of experiments, a femtosecond transient pump–probe technique is used to investigate the Young’s moduli of the aluminum and silicon nitride layers by launching ultra-high frequency bulk acoustic waves in the films. The measured transient signals are compared with simulated transient thermoelastic signals in multi-layer structures, and the elastic moduli are determined. Independent pump–probe tests on silicon substrate-supported region and unsupported region are in good agreement. In a second set of experiments, dispersion curves of the A0 mode of the Lamb waves that propagate along the unsupported films are measured using a broadband photoacoustic guided-wave method. The residual stresses and flexural rigidities for the same set of double-layer membranes are determined from these dispersion curves. Comparisons of the results obtained by the two photoacoustic techniques are made and discussed.  相似文献   

14.
The penetration depth of electron in amorphous aluminum nitride (AlN) is determined in terms of energy loss per unit length using electron beam in a cathodoluminescence (CL) apparatus. Thin films bilayers of holmium doped aluminum nitride (AlN:Ho) and thulium doped aluminum nitride (AlN:Tm) are deposited on silicon substrates by rf magnetron sputtering method at liquid nitrogen temperatures. The bilayers structure consisted of a 37.8 nm thick AlN:Tm film on the top of a 15.3 nm thick AlN:Ho film. Electron beam of different energies are allowed to penetrate the AlN:Tm/AlN:Ho bilayers film. The spectroscopic properties of AlN:Ho and AlN:Tm, the thickness of the film and the energies of electron beam are used to calculate the penetration depth of electron in amorphous AlN. Electron beam of 2.5 keV energy was able to pass through the 37.8 nm thick AlN:Tm film. The electron penetration depth for AlN is found to be 661.4 MeV/cm.  相似文献   

15.
The elastic moduli of ultra thin tungsten (W) films on polymers were assessed with wrinkling analysis. Thin W films with a range of thickness between 17 and 100 nm were deposited on compliant polymers and Si strips using DC magnetron sputtering method, causing the tensile stress in a few GPa scale with respect to the thickness of W films. By applying lateral compression on polymer, wrinkle patterns were developed in the W thin film with well-defined amplitude and wavelength. Using a simple equation on wrinkle analysis, the range of elastic moduli was estimated with increasing the thickness. It was found that the elastic modulus and the tensile stress decreased with increasing the film thickness.  相似文献   

16.
Jiafan Chen 《中国物理 B》2022,31(7):76802-076802
We report the growth of porous AlN films on C-face SiC substrates by hydride vapor phase epitaxy (HVPE). The influences of growth condition on surface morphology, residual strain and crystalline quality of AlN films have been investigated. With the increase of the V/III ratio, the growth mode of AlN grown on C-face 6H-SiC substrates changes from step-flow to pit-hole morphology. Atomic force microscopy (AFM), scanning electron microscopy (SEM) and Raman analysis show that cracks appear due to tensile stress in the films with the lowest V/III ratio and the highest V/III ratio with a thickness of about 3 μm. In contrast, under the medium V/III ratio growth condition, the porous film can be obtained. Even when the thickness of the porous AlN film is further increased to 8 μm, the film remains porous and crack-free, and the crystal quality is improved.  相似文献   

17.
Thermal stress of porous alumina films has been simulated by finite element method based on thermal transfer equation and thermal stress formulas. The influence of equivalent thermal conductivity and elastic modulus on laser induced damage threshold (LIDT) has been studied. It was found that the biggest circumferential tensile stress will be small with the porosity from 15% to 35%, and it effectively improves the LIDT. The equivalent thermal conductivity and LIDT decreases with the increase of porosity. The equivalent elastic modulus decreases and LIDT increase with the increase of porosity.  相似文献   

18.
Physics of the Solid State - Dielectric and polar properties of aluminum nitride (AlN) thin films epitaxially grown on differently oriented silicon substrates with the p-type conduction and a...  相似文献   

19.
邸玉贤  计欣华  胡明  秦玉文  陈金龙 《物理学报》2006,55(10):5451-5454
通过基底曲率法设计和制作了一种测量薄膜应力的装置,它具有全场性、非接触性、高分辨率、无破坏、数据获取速度快等特点.使用该装置测量了电化学腐蚀法制作的多孔硅薄膜的残余应力,并研究了孔隙率和基底掺杂浓度对残余应力的影响,结果表明随着孔隙率的增加和硼离子掺杂浓度的提高,多孔硅表面的拉伸应力逐渐加大,由此表明多孔硅薄膜的微观结构与残余应力的大小有着密切的联系. 关键词: 薄膜 残余应力 孔隙率 多孔硅  相似文献   

20.
The fabrication of freestanding GaN microstructures using AlN sacrificial layers (SLs) is reported. GaN layers were grown by plasma assisted molecular beam epitaxy (PAMBE) on polycrystalline AlN sacrificial layers that have been deposited at 600 °C. Isotropic wet chemical etching of the AlN film released GaN microbridges and – cantilevers. The stress gradient and the compressive stress in the GaN‐film was extracted by analysis of the relation between beam geometry and displacement. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号