首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了获得高功率窄脉宽532 nm绿光激光输出,通过高重复频率声光驱动调Q技术和LD侧面泵浦Nd∶GdVO4技术,获得高功率线偏振1 064 nm激光输出.采用内腔倍频方式,对非线性晶体KTP进行频率变换,实现高功率窄脉宽绿光激光输出.在电源输入电流30 A,调Q驱动频率10 kHz的条件下,获得最高功率30 W线偏振1 064 nm激光输出,脉宽30 ns,倍频KTP晶体获得23.4 W的532 nm绿光输出,1 064 nm到532 nm转化效率为78%.实验结果表明:通过声光调Q技术和LD侧面泵浦Nd∶GdVO4技术,可以实现高功率线偏振窄脉宽1 064 nm激光输出,倍频非线性晶体KTP可获得高功率窄脉宽532 nm激光.  相似文献   

2.
研究了绿光平均功率达84W的高稳定声光调Q全固态激光器。通过理论分析和试验研究,针对KTP热效应以及Nd∶YAG棒的热致双折射效应,设计并优化了谐振腔来压窄脉宽。采用35个20W的高功率LD侧面抽运Nd∶YAG棒和Ⅱ类相位匹配KTP晶体(24℃时相位匹配角为Φ=23.6°,θ=90°,尺寸为7mm×7mm×7mm),采用双声光Q开关,高效平凹结构,实现了高功率内腔倍频激光器的稳定运转;在抽运电流25A时,获得了重复频率为10kHz,脉冲宽度优于45ns,输出功率为84W的高功率、高重频、窄脉宽绿光(532nm)输出,光_光转换效率为14.3%,不稳定度为±3%。  相似文献   

3.
高效LD侧面泵浦腔外倍频绿光激光器   总被引:1,自引:0,他引:1  
为满足激光加工、激光彩色显示、数据存储、医疗卫生和科研等领域对绿光激光器的需要,研制了一台高倍频效率、窄脉宽侧面泵浦腔外倍频的YAG/LBO绿光激光器。分析并计算了腔外最佳聚焦参数,确定了透镜的最佳聚焦焦距。实验中,利用808nm激光二极管侧面泵浦Nd:YAG晶体,使用BBO晶体进行加压式调Q,采用四分之一波片补偿Nd:YAG晶体的热退偏,最终实现了重复频率1kHz、输出功率10.7W的1 064nm输出,最大单脉冲能量为10.7mJ。在此基础上,采用Ⅰ类温度相位匹配LBO晶体对基频光进行腔外倍频,获得了重复频率1kHz、脉宽21ns、最大输出功率6.04W的532nm准连续绿光输出,倍频效率高达59.3%。  相似文献   

4.
LD侧面泵浦电光调Q532nm脉冲激光器   总被引:1,自引:1,他引:0       下载免费PDF全文
沈兆国  白杨  宋东璠  白晋涛 《应用光学》2009,30(6):1036-1039
 为了实现高可靠、窄脉宽、高峰值功率激光输出,采用侧面泵浦技术和电光调Q技术,设计出一种激光二极管侧面泵浦电光调Q全固态绿光激光器。采用结构简单、紧凑的平-平腔设计,其端镜和输出镜均为平面镜,获得较稳定的侧面泵浦Nd∶YAG腔外倍频KTP脉冲绿光激光输出。当泵浦电流为120A,重复频率为600Hz时,获得脉冲绿光的最高输出平均功率为3.62W,1064nm到532nm的转换效率为15.3%,其脉宽为21ns,峰值功率为300kW, 单脉冲能量为6.01mJ。实验结果表明:该激光器稳定性可靠,输出激光脉宽较窄、峰值功率高。  相似文献   

5.
LD脉冲侧面泵浦Nd∶YAG电光调Q低重频窄脉宽紫外激光器   总被引:1,自引:0,他引:1  
介绍了在1~20 Hz电光调Q情况下,半导体脉冲激光侧面泵浦Nd∶YAG晶体腔外四倍频266 nm紫外激光器的输出特性.实验采用直腔结构,在腔外分别利用KTP和BBO晶体产生532 nm倍频绿光、266 nm四倍频紫外激光.当泵浦电流为120 A、重复率为1 Hz时,266 nm紫外激光最大单脉冲能量为15.4 mJ、脉宽8 ns,峰值功率高达1.93 mW;重复率20 Hz时,获得了最大平均功率为156.2 mW的266 nm紫外激光输出,四倍频的转换效率为10.63%.同时利用一组分光镜,获得了352 mW的532 nm脉冲绿光和423 mW的1 064 nm脉冲红外光输出.  相似文献   

6.
利用KTP晶体和BBO晶体对激光二极管(LD)泵浦Nd:YVO4晶体声光调Q产生的1 064 nm红外光进行二倍频与四倍频, 实现了高效的紫外激光输出. 采用腔外倍频技术可使学生看到倍频前后的激光变换过程.  相似文献   

7.
LD泵浦Nd:YAG/Cr:YAG腔外频率变换高功率紫外激光器   总被引:8,自引:4,他引:4  
用KTP晶体对激光二极管端面泵浦的Nd:YAG晶体;Cr:YAG被动调Q产生的1064nm脉冲激光器进行腔外倍频,用BBO晶体四倍频产生266 nm紫外激光.用15 W的LD阵列;当LD泵浦功率为12 W的情况下;红外(1064 μm)调Q平均输出功率为2.2 W;脉冲序列周期为40 μs;脉宽为18ns;峰值功率高达4.9kW.采用KTP腔外二倍频;532nm的绿光输出平均功率为850mW;用BBO腔外四倍频;266nm的紫外光输出平均功率高达215mW,绿光-紫外光光转换效率为25.2%, 红外到紫外总的转换效率为9.8%.  相似文献   

8.
用KTP晶体对激光二极管端面泵浦的Nd∶YAG晶体,Cr∶YAG被动调Q产生的1064 nm脉冲激光器进行腔外倍频,用BBO晶体四倍频产生266 nm紫外激光.用15 W的LD阵列,当LD泵浦功率为12 W的情况下,红外(1064μm)调Q平均输出功率为2.2 W,脉冲序列周期为40μs,脉宽为18 ns,峰值功率高达4.9 kW.采用KTP腔外二倍频,532 nm的绿光输出平均功率为850 mW;用BBO腔外四倍频,266 nm的紫外光输出平均功率高达215 mW,绿光-紫外光光转换效率为25.2%,红外到紫外总的转换效率为9.8%.  相似文献   

9.
利用Nd∶YAG/Cr∶YAG/YAG键合晶体,建立了具有高平均输出功率的LD侧面泵浦被动调Q激光器系统.当Cr∶YAG的初始透过率为85%、最大泵浦光功率为187.5 W时,1 064nm激光的平均输出功率为83.68W.通过KTP晶体进行倍频,在最大泵浦光功率下,产生了27.2W532nm绿光激光脉冲,同时脉冲宽度和重复频率分别为210ns和21.2kHz;绿光单脉冲能量和峰值功率分别为1.28mJ和6.1kW;泵浦光(808nm)到倍频光(532nm)的光-光效率为14.5%.  相似文献   

10.
高功率二极管泵浦腔内倍频激光器   总被引:8,自引:4,他引:4       下载免费PDF全文
 成功研制了一台高功率二极管泵浦声光Q开关腔内倍频Nd:YAG激光器。当泵浦功率约为350W时,采用透过率为30%的输出耦合镜,调Q激光输出功率32.5W,脉宽约200ns,重复频率7kHz;采用Ⅱ类匹配KTP晶体腔内倍频,获得了32.5W的绿光输出,脉宽约120ns。输出光束平滑,远场为类高斯分布,测得的光束质量因子为3.6。  相似文献   

11.
报道了一台LD侧面泵浦Nd:YAG晶体的内腔三次谐波转换的全固态准连续紫外激光器。在谐振腔内,1064nm的基频波通过对Ⅱ类相位匹配KTP晶体进行二倍频来产生532nm波长激光,二者再通过对Ⅱ类相位匹配LBO晶体进行和频来获得355nm紫外激光输出。355nm全固态紫外激光器在声光调Q重复频率为2.8kHz下,当输入电流为18A时可得到503mW的激光输出。  相似文献   

12.
就水下探测设备要求激光器输出频率高、体积小、波段宽,提出通过侧面泵浦激光技术和电光调Q技术获得高重频1 064 nm波段激光。利用腔外波长变换技术,实现532 nm激光输出。在电源输入电流100 A,调Q驱动频率1 kHz的条件下, 获得36 mJ的1 064 nm激光输出和20 mJ的532 nm激光输出。试验结果表明:通过半导体泵浦技术和频率变换技术,可实现高重频窄脉宽双波段激光输出。  相似文献   

13.
利用单根Nd∶YAG晶体棒,实现1 064 nm和1 319 nm双波长基频光振荡及其倍频光532 nm、660 nm激光的输出.采用LD侧面抽运单根Nd∶YAG晶体棒实现1 064 nm和1 319 nm基频光振荡,在此基础上使用非线性频率变换技术获得532 nm和660 nm倍频光的输出.结果表明:1 064 nm和1 319 nm基频激光同时输出时功率分别为30.5 W和8.78 W,单独输出时功率分别为35.6 W和11.2 W|在声光调Q频率分别为10.5 kHz和20.5 kHz时,获得了功率分别为5.34 W和1.353 W的532 nm激光和660 nm激光两路同时运转输出、功率分别为6.72 W和1.902 W各路单独输出,两种情况下倍频转换效率均为17.5%和15.4%,不稳定度小于2%.  相似文献   

14.
利用LD端面抽运声光调Q Nd∶YVO4激光器作为抽运源,采用线性腔实现了KTP腔内倍频高效绿光激光的输出.在调Q脉冲重复频率为40 kHz、1 064 nm输入光的功率为1 608 mW的条件下,获得了999 mW单横模(TEM00模)的绿光输出,相应的光-光转换效率为62.1%.绿光激光器输出光谱的半峰宽小于0.11 nm,其输出功率的不稳定度为±1.2%.  相似文献   

15.
多光束泵浦中红外激光器   总被引:2,自引:2,他引:0       下载免费PDF全文
为了获得高功率高效率3 m~5 m中红外激光输出,利用双声光调Q晶体,通过高重复频率驱动调Q同步技术和LD侧面泵浦双棒串接技术,获得高功率高光束质量1.06 m激光双端输出,外置起偏器获得4束激光输出,利用波片偏振旋光原理,实现4束偏振态一致的激光输出,泵浦非线性晶体PPLT进行频率变换,实现高功率3 m~5 m中红外激光输出。在电源输入电流30 A、调Q驱动频率10 kHz的条件下,获得最高功率10.6 W的3.9 m中红外激光,1.06 m~3.9 m转化效率为9.5%。实验结果表明:通过双声光调Q技术和LD侧面泵浦双棒串接技术,可以实现4束高重复频率窄脉宽1.06 m偏振激光输出,泵浦PPLT可获得高功率3.9 m中红外激光输出。  相似文献   

16.
为了获得高效率多波段激光输出,通过高重复频率驱动声光调Q技术和LD侧面泵浦技术,获得高功率高重频窄脉宽1.06 m激光输出。利用起偏器件获得垂直和水平两束1.06 m线偏振光,一束垂直线偏振光泵浦非线性晶体周期极化钽酸锂(PPLT),实现1.46 m与3.9 m激光输出后与另一束1.06 m水平线偏振光合束,实现三波段共轴激光输出。在电源输入电流35 A、调Q驱动频率10 kHz的条件下,获得140 W的1.06 m激光。分束后泵浦PPLT获得最高功率为6.3 W的3.9 m和8.6 W的1.46 m激光,差频转化效率为21.3%。试验结果表明:通过高重频声光调Q技术和LD侧面泵浦技术,可以实现高重频窄脉宽1.06 m光输出,泵浦PPLT可获3.9 m和1.46 m激光输出。  相似文献   

17.
报道了一种灯泵浦结构的Nd:YAG晶体电光调Q高峰值功率266nm紫外激光器。结合磷酸二氢钾(KDP)晶体性质,基于倍频理论,分析了考虑走离效应情况下存在相位失配量时KDP晶体长度对转换效率的影响。该激光器采用紧凑的平平腔结构,灯泵浦Nd:YAG晶体电光调Q 1064nm激光作为基频光,腔外采用Ⅱ类匹配磷酸钛氧钾(KTP)和Ⅰ类匹配KDP分别作为二倍频和四倍频晶体。利用能量计、示波器等仪器进行测量,激光器重复频率1Hz时,获得脉宽6.0ns,单脉冲能量35mJ的266nm紫外激光输出,峰值功率高达5.83 MW;当重复频率10Hz时,获得单脉冲能量28.9mJ的266nm紫外激光。532~266nm转换效率最高可达31.9%。利用该高峰值功率、窄脉宽266nm紫外激光器,能够实现激光打标、激光雕刻。  相似文献   

18.
为了获得高效率3 m~5 m中红外激光输出,利用电光调Q晶体RbTiOPO4(RTP),通过高重复频率驱动调Q同步技术和LD侧面泵浦技术,获得高重频窄脉宽1.06 m激光输出,泵浦非线性晶体周期极化钽酸锂(PPLT)进行频率变换,实现高功率3 m~5 m中红外激光输出。在电源输入电流20 A、调Q驱动频率10 kHz的条件下,获得15 W的1.06 m激光。利用该1.06 m激光泵浦PPLT获得最高功率为2.6 W的3.9 m中红外激光,1.06 m到3.9 m的转化效率为17.3%。实验结果表明:通过高重频电光调Q技术和LD侧面泵浦技术,可以实现高重频窄脉宽1.06 m偏振光输出,泵浦PPLT可获得高功率高效率3.9 m中红外激光输出。  相似文献   

19.
董磊  刘欣悦  陈浩 《中国光学》2015,8(5):800-805
为了研制激光干涉成像所需的主振荡功率放大(MOPA)结构脉冲单频激光器,本文完成MOPA激光器的种子源即声光调Q脉冲单频1 064 nm激光器的特性研究,同时完成种子源腔外倍频绿光特性研究。脉冲单频激光器采用声光调Q模块实现脉宽约20 ns的1 064 nm脉冲激光输出,采用环形腔设计并采用一组不同厚度的标准具实现单纵模运转。实验研究基频1 064nm和倍频532 nm激光脉冲的线宽,得出在全脉宽范围内都具有较高时间相干性的结论。实验分别获得脉宽约28 ns峰值功率约6.5 kW的1 064 nm脉冲单频激光和脉宽约20 ns、峰值功率约0.5 kW的532 nm脉冲单频激光,腔外倍频效率为5.6%。实验同时也验证了腔外倍频的激光脉宽压缩效应。  相似文献   

20.
报道了一种利用激光二极管(LD)端面泵浦Nd:YVO4晶体,声光调Q,LBO临界相位匹配腔内倍频的高效率、小体积、风冷绿光激光器。分析了不同偏振光泵浦的情况下,激光晶体对泵浦光的吸收特性。由分析得出,采用部分偏振光泵浦,可以提高激光晶体对泵浦光吸收均匀性,改善基波畸变,获得高转换效率激光输出。实验中,在泵浦光功率为33 W、声光调Q重复频率为20 kHz时,得到脉宽为23.96 ns、平均功率为15 W的1064 nm基频光输出。经倍频后,得到平均功率为11.2 W的绿光输出,倍频效率为74.6%,总体光-光转换效率为34%。在输出功率为10 W时,测得1 h内输出功率不稳定度为0.512 2%,水平方向和竖直方向的光束质量因子M2分别为1.2和1.1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号