首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
利用傅里叶红外光谱法和计算机辅助分析法研究壁材乳清蛋白和阿拉伯胶在油脂微胶囊形成过程中的相互作用。结果表明,经高压均质和喷雾干燥后,乳清蛋白的酰胺A带向高波数方向移动,这可能是由于乳清蛋白和阿拉伯胶发生了共价交联,而酰胺Ⅰ带向高波数移动了6.1 cm-1则是由于蛋白质分子内的氢键作用力减弱所致。对酰胺Ⅰ带图谱进行高斯拟合后发现,乳清蛋白质二级结构中α-螺旋的含量由19.55%下降至17.50%,β-折叠的含量由30.59%下降至25.63%,共减少了7个百分点。这表明蛋白质分子内的氢键作用力减弱,致使蛋白质分子的刚性结构减弱,韧性结构增强,使蛋白质分子表现出一定的柔性。SDS-PAGE电泳研究结果表明,乳清蛋白-阿拉伯胶复合物中产生分子量较大的共价产物。喷雾干燥过程中乳清蛋白与阿拉伯胶发生了共价交联,使得复合物的乳化活性得到提高。用环境扫描电镜观测不同壁材制备的油脂微胶囊的表面结构,发现乳清蛋白-阿拉伯胶复合物为壁材制备的油脂微胶囊具有良好的韧性,微孔少,结构致密。  相似文献   

2.
微胶囊形成过程中蛋白质二级结构变化的红外光谱分析   总被引:1,自引:0,他引:1  
选用乳清蛋白、大豆分离蛋白分别与麦芽糊精共混作为微胶囊壁材,用红外光谱法研究这两种蛋白质在微胶囊形成前后的结构变化。结果表明:两种蛋白质分别与麦芽糊精共混,经过加热和喷雾干燥后,蛋白质的二级结构发生了改变,其中乳清蛋白二级结构α-螺旋含量降低1.90%,β-折叠含量增加0.89%,β-转角增加8.19%,无规卷曲减少7.18%。大豆分离蛋白二级结构α-螺旋含量降低1.64%,β-转角含量降低0.47%,β-折叠增加10.20%,无规卷曲减少了9.03%。同时,两种蛋白质的酰胺Ⅰ带均向低波数方向移动,说明在微胶囊壁结构形成过程中两种蛋白质与麦芽糊精之间发生了相互作用,形成的氢键作用力较强。利用扫描电镜观察分别用两种蛋白质作为壁材包埋大豆油脂微胶囊的表面微结构,发现使用α-螺旋含量高的乳清蛋白为壁材的微胶囊表面更光滑、完整。  相似文献   

3.
高静压物理变性处理糯玉米淀粉的糊化及重结晶机理研究   总被引:1,自引:0,他引:1  
采用高静压技术(HHP)作为物理变性方法处理糯玉米淀粉,考察高静压力对糯玉米淀粉糊化及重结晶的影响。采用偏光显微镜及扫描电子显微镜观测处理后的淀粉颗粒的形态变化,激光粒度分析仪用于记录淀粉颗粒的粒度分布及变化规律;利用红外光谱技术分析可能发生的微观二级结构变化,结合X射线衍射曲线及DSC差热分析曲线,验证淀粉颗粒内部结构的变化。结果表明:300MPa的高静压对淀粉具有压缩作用,使其粒度减小,结晶度提高,起始糊化温度、糊化焓值增加;450MPa高静压处理后,淀粉的结晶结构几乎完全被破坏,糊化度达到95%,膨胀度为57.07%,并以此验证了HHP处理会导致淀粉颗粒发生有限膨胀;600MPa高静压处理后,淀粉颗粒发生重结晶现象,表现为典型的多峰、宽峰DSC曲线,结晶度增加。综合本研究及其他研究成果,提出"3个发展阶段"的HHP对糯玉米淀粉颗粒微观结构变化的新机制,包括:颗粒被压缩、内部结晶结构解体及颗粒解体并重新排序阶段。  相似文献   

4.
用异硫氰酸荧光素作为荧光探针,在碱性条件下标记酪蛋白,根据标记前后吸收光谱、荧光光谱的变化情况对异硫氰酸荧光素和酪蛋白相互作用进行了初步探讨.用 SephadexG-50 层析柱分离出荧光标记物,以荧光标记酪蛋白作乳化剂,采用喷雾干燥法制备荧光标记酥油微胶囊,用激光扫描共聚焦湿微镜在488 nm 的 Ar+ 激光光源激发下断层扫描酥油微胶囊微结构.结果表明,酪蛋白是在油水界面膜和微胶囊表面聚结.制备出的酥油微胶囊有单核和多核两种形式,微胶囊为园球形,表面光滑,无裂缝,无凹陷,微胶囊壁表面完整,壁结构较为致密,其颗粒尺寸为有明显差异的大小颗粒组成,而且小颗粒附着在大颗粒上,形成了部分附聚粉,有助于微胶囊溶解,是一种较为理想的微胶囊制品.  相似文献   

5.
水分对高静压处理不同类型淀粉微观结构的影响   总被引:1,自引:0,他引:1  
利用高静压(HHP)作为物理变性方法处理糯玉米淀粉和木薯淀粉,考察水分含量对不同类型淀粉的糊化及重结晶的影响。用偏光显微镜、扫描电子显微镜观测HHP处理后淀粉颗粒的形态变化,利用激光粒度分析仪记录淀粉颗粒的粒度分布及变化规律,结合X射线衍射曲线及低场核磁共振图谱,分析淀粉颗粒内水分的结合方式及程度。结果表明:当粉水比(淀粉质量和水质量之比)为3/10~5/10时,在HHP处理下,两种淀粉均发生结晶解体和溶胀现象。糯玉米淀粉的重结晶程度顺序为4/10粉水比3/10粉水比5/10粉水比;木薯淀粉颗粒结晶结构完全消失,结晶破坏的程度是3/10粉水比4/10粉水比5/10粉水比。随着水分含量增大,糯玉米淀粉及木薯淀粉的粒度逐渐增大。干燥后淀粉中的水分主要以结合水的形式存在,且水分参与结晶结构的形成。  相似文献   

6.
纳米颗粒对蛋白质淀粉纤维化过程的影响机制对扩大其在生物学诊断和纳米药物应用中起到至关重要的作用. 在本研究中,通过拉曼光谱结合原子力显微镜和硫磺素T荧光光谱实验研究不同浓度银纳米颗粒条件下的溶菌酶淀粉纤维化过程. 利用四个具有代表性的拉曼光谱指标在分子水平上监测蛋白质的三级结构和二级结构的转化过程,如:Trp费米共振双峰(1340 cm-1和1360 cm-1-1-1相似文献   

7.
采用红外光谱(IR)、X射线粉晶衍射(XRD)、扫描电子显微镜(SEM)和差热分析(DTA)等测试,分别从地开石的有序度。矿物微形貌特征以及地开石中水的存在形式对水坑石透明度的影响因素进行了深入研究。红外光谱和XRD测试结果显示样品主要矿物组成为地开石。红外光谱中高频区3 704和3 621 cm-1两吸收峰的分裂程度和XRD图谱中2θ为19°~24°之间的衍射峰的分裂程度可表示地开石有序度,分别计算样品红外光谱中3 704和3 621 cm-1两吸收峰的强度比值(OI)及XRD图谱中(111)晶面衍射峰和(111)晶面衍射峰的分裂程度指数(DHI);计算结果表明这两个表征有序度的参数与透明度并无密切关系。扫描电镜测试结果显示地开石矿物晶体颗粒整体发育越均匀,晶体颗粒形态越相近、粒径大小越均一时,样品透明度越高,但晶体颗粒自身的结晶度、自形程度和粒径的绝对大小与透明度并无关系。差热分析测试结果表明水坑石的透明度与地开石晶体结构中结构水和吸附水的含量有关,结构水含量越接近理论值,样品晶体结构越完整,透明度越高;结构水的含量降低时,部分羟基缺失导致晶体结构完整性下降,结构单元层内部的电荷平衡被破坏,层间域中吸附更多水分子,吸附水在层间域中作为杂质分子存在,使样品的透明度下降。  相似文献   

8.
利用熔融共混、压片的方法制备了两种不同结构的碳黑(乙炔碳黑和高结构碳黑)填充的高密度聚乙烯复合材料,并利用太赫兹时域光谱研究了复合体系在太赫兹波段的介电性质.研究发现,随着频率的增加,体系的吸收系数逐渐增大而折射率则逐渐降低;在相同的频率下,吸收系数和折射率均随颗粒浓度的增加而增大;与乙炔碳黑相比,相同浓度的高结构碳熙填充的复合体系具有较大的吸收系数和较低的折射率,这与碳黑的颗粒结构以及颗粒间的团聚状态是紧密相关的.假定复合体系的介电损耗是由碳黑颗粒内部载流子的极化和聚乙烯基体的界面极化所导致的,利用双德拜模型对实验结果进行了解释,分别得到了两种极化模式所对应的弛豫时间和弛豫强度等信息.  相似文献   

9.
超声波处理对脱脂麦胚分离蛋白结构的变化研究   总被引:4,自引:0,他引:4  
Liu B  Ma HL  Li SJ  Tian WM  Wu BG 《光谱学与光谱分析》2011,31(8):2220-2225
应用傅里叶红外光谱(FTIR)、荧光光谱研究超声处理对脱脂麦胚分离蛋白(DWGP)结构的变化,建立DWGP高效酶解与其结构变化之间的关系.研究发现,超声处理均可提高DWGP的酶解效果,特别是经超声功率600 W、时间10 min处理后,酶解液抑制活性与对照组相比提高了23.96%.通过荧光光谱发现,超声作用改变DWGP溶液荧光强度,适当超声处理可使蛋白分子伸展、生色基团外露,有助于蛋白酶解后获得活性更高的抑制肽.采用对FTIR谱酰胺I带进行曲线拟合的方法,定量分析了不同超声功率、时间对DWGP二级结构的影响,发现超声作用使β-折叠相对含量下降而β-转角含量增加,这可能是DWGP酶解后获得高效抑制肽的主要原因.  相似文献   

10.
花巍  刘学深 《物理学报》2011,60(11):110210-110210
采用辛算法数值求解了一维立方五次方非线性Schrödinger方程,研究了不同非线性参数下非线性Schrödinger方程的动力学性质.数值结果表明,随着立方非线性参数的增加,系统经历了拟周期状态、混沌状态和周期状态,且在五次方项的调制下,呼吸子解可以退化为单孤子解. 关键词: 非线性Schrödinger方程 动力学性质 孤子 辛算法  相似文献   

11.
《Ultrasonics sonochemistry》2014,21(4):1265-1274
This study reports on the process optimization of ultrasound-assisted, food-grade oil–water nanoemulsions stabilized by modified starches. In this work, effects of major emulsification process variables including applied power in terms of power density and sonication time, and formulation parameters, that is, surfactant type and concentration, bioactive concentration and dispersed-phase volume fraction were investigated on the mean droplet diameter, polydispersity index and charge on the emulsion droplets. Emulsifying properties of octenyl succinic anhydride modified starches, that is, Purity Gum 2000, Hi-Cap 100 and Purity Gum Ultra, and the size stability of corresponding emulsion droplets during the 1 month storage period were also investigated. Results revealed that the smallest and more stable nanoemulsion droplets were obtained when coarse emulsions treated at 40% of applied power (power density: 1.36 W/mL) for 7 min, stabilized by 1.5% (w/v) Purity Gum Ultra. Optimum volume fraction of oil (medium chain triglycerides) and the concentration of bioactive compound (curcumin) dispersed were 0.05 and 6 mg/mL oil, respectively. These results indicated that the ultrasound-assisted emulsification could be successfully used for the preparation of starch-stabilized nanoemulsions at lower temperatures (40–45 °C) and reduced energy consumption.  相似文献   

12.
This work addresses the obtaining of biocompatible magnetic polyvinyl alcohol—chitosan microspheres, specifically tailored/functionalised to bind directly blood toxins using an emulsion crosslinking preparation method. The following synthesis parameters were studied: water to oil phase ratio, polyvinyl alcohol molecular weight, chitosan to polyvinyl alcohol weight ratio, surfactant composition and concentration of the crosslinking agent. These parameters were optimized for producing a high yield of colloidally stable and uniformly sized particles with significant magnetization of saturation, bearing surface amino groups that can be further used to bind blood toxins directly. The particles were characterized regarding their size distribution and surface charge (laser diffraction analysis), morphology (transmission electron microscopy), magnetic properties, chemical composition (Fourier transform infrared spectroscopy) and concentration of the surface amino groups (conductometric titration).  相似文献   

13.
Using the nuclear magnetic resonance (NMR) pulsed field gradient (PFG) technique, it is possible to determine the size distribution of emulsion droplets. This method is extended so that the same measurements can be performed in the presence of flow. The resultant flow-compensating NMR-PFG technique is used to determine the oil droplet-size distribution of an oil-in-water emulsion flowing in a narrow tube at various flow rates. Comparison with the nonflowing oil droplet-size distribution enables the effect of velocity shear on the oil droplet-size distribution to be quantified.  相似文献   

14.
In this study, microcapsules were prepared by spray drying and embedding hemp seed oil (HSO) with soy protein isolate (SPI) and maltodextrin (MD) as wall materials. The effect of ultrasonic power on the microstructure and characteristics of the composite emulsion and microcapsules was studied. Studies have shown that ultrasonic power has a significant impact on the stability of composite emulsions. The particle size of the composite emulsion after 450 W ultrasonic treatment was significantly lower than the particle size of the emulsion without the ultrasonic treatment. Through fluorescence microscopy observation, HSO was found to be successfully embedded in the wall materials to form an oil/water (O/W) composite emulsion. The spray-dried microcapsules showed a smooth spherical structure through scanning electron microscopy (SEM), and the particle size was 10.7 μm at 450 W. Fourier transform infrared (FTIR) spectroscopy analysis found that ultrasonic treatment would increase the degree of covalent bonding of the SPI-MD complex to a certain extent, thereby improving the stability and embedding effect of the microcapsules. Finally, oxidation kinetics models of HSO and HSO microcapsules were constructed and verified. The zero-order model of HSO microcapsules was found to have a higher degree of fit; after verification, the model can better reflect the quality changes of HSO microcapsules during storage.  相似文献   

15.
Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60 nm) of the emulsion was obtained at HLB of 14, S/O1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5 min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced.  相似文献   

16.
Lotus seed starch nanoparticles were prepared by ultrasonic (ultrasonic power: 200 W, 600 W, 1000 W; time: 5 min, 15 min, 25 min; liquid ratio (starch: buffer solution): 1%, 3%, 5%) assisted enzymatic hydrolysis (LS-SNPs represent lotus seed starch nanoparticles prepared by enzymatic hydrolysis and U-LS-SNPs represent lotus seed starch nanoparticles prepared by high pressure homogenization-assisted enzymatic hydrolysis). The structure and physicochemical properties of U-LS-SNPs were studied by laser particle size analysis, scanning electron microscope, X-ray diffraction, Raman spectroscopy, nuclear magnetic resonance and gel permeation chromatography system. The results of scanning electron microscopy showed that the surface of U-LS-SNPs was cracked and uneven after ultrasonic-assisted enzymolysis, and there was no significant difference from LS-SNPs. The results of particle size analysis and gel permeation chromatography showed that the particle size of U-LS-SNPs (except 5% treatment group) was smaller than that of LS-SNPs. With the increase of ultrasonic power and time, the weight average molecular gradually decreased. The results of X-ray diffraction and Raman spectroscopy showed that ultrasonic waves first acted on the amorphous region of starch granules. With the increase of ultrasonic power and time, the relative crystallinity of U-LS-SNPs increased first and then decreased. The group (600 W, 15 min, 3%) had the highest relative crystallinity. The results of nuclear magnetic resonance studies showed that the hydrogen bond and double helix structure of starch were destroyed by ultrasound, and the double helix structure strength of U-LS-SNPs was weakened compared with LS-SNPs. In summary, U-LS-SNPs with the small-sized and the highest crystallinity can be prepared under the conditions of ultrasonic power of 600 W, time of 15 min and material-liquid ratio of 3%.  相似文献   

17.
This study was designed to compare the properties of myofibrillar protein (MP) stabilized soybean oil-in-water emulsions fabricated by ultrasound-assisted emulsification (UAE), high-pressure homogenization (HPH) and high-speed homogenization (HSH). The emulsion properties, droplet characteristics, interfacial proteins, protein exposure extent, microrheological properties, multiple light scattering results, and 7 d storage stabilities of the three emulsions were specifically investigated. Our results indicate that UAE and HPH were better emulsification methods than HSH to obtain high-quality emulsions with higher emulsifying activity index (UAE 20.73 m2·g−1, HPH 11.76 m2·g−1 and HSH 6.80 m2·g−1), whiteness (UAE 81.05, HPH 80.67 and HSH 74.09), viscosity coefficient (UAE 0.44 Pa·sn, HPH 0.49 Pa·sn and HSH 0.22 Pa·sn), macroscopic viscosity index (UAE 2.31 nm−2·s, HPH 0.38 nm−2·s and HSH 0.34 nm−2·s), and storage stability, especially for the UAE. Furthermore, UAE was a more efficient emulsification method than HPH to prepare the fine MP-soybean oil emulsion. The protein-coated oil droplets were observed in the three emulsions. The emulsion droplet size of the UAE-fabricated emulsion was the lowest (0.15 μm) while the interfacial protein concentration (93.37%) and the protein exposure extent were the highest among the three emulsions. During the 7 d storage, no separation was observed for the UAE-fabricated emulsion, while the emulsions fabricated by HPH and HSH were separated after storage for 5 d and 2 h. Therefore, this work suggests that UAE could be a better method than HPH and HSH to fabricate MP-soybean oil emulsion.  相似文献   

18.
海面溢油在其风化迁移过程中,会形成不同溢油乳化物,对海洋环境造成极大危害。科学量化溢油乳化物,有助于溢油污染应急处理和灾损评估。已有对溢油乳化物展开的研究由于缺乏系统的实验数据、理化与光学参数,尚不清楚不同类型油水乳化物的精细光谱响应特征与变化规律,无法给出不同类型溢油乳化物光谱与海水表层油水比的数据关系。通过轻质油乳化物的室内实验,采用激光诱导荧光技术手段,从不同类型,不同表层油水比的溢油乳化物荧光光谱响应差异和变化规律入手,以乳化柴油相关数据作建模样本,乳化煤油相关数据作验证样本,开展统计分析,并分别设计了油包水、水包油两种类型下的表层油水比估测模型。数据处理过程中,为了消除LIF系统本身对接收到的荧光信号强度的影响,利用水的拉曼散射信号对乳化液的荧光信号进行归一化处理,将两者的比值作为后续的分析数据。具体数据研究表明:油包水型乳化溢油的荧光峰值对数和表层含水率对数之间可建立非线性回归模型;水包油型乳化溢油的荧光峰值和表层含水率之间也可建立非线性回归模型。非线性拟合相关系数均在0.9以上,即模型具有较高质量,且模型中的实际系数依赖于不同油种,不同的特征荧光峰。由此可见,不同乳化油种的不同特征荧光峰与表层油水比之间虽具有相同的变化趋势,但变化的程度有所不同。在此基础上,采用参数查找表的方式,建立了轻质油乳化物油水比的估测方法,可根据荧光相对强度最后反演得到表层油水比。该方法在一定程度上可对海面轻质油乳化物实现有效量化,为将来海面溢油乳化物更加实时准确的定量分析提供理论基础和依据, 也为海面溢油污染应急处理提供技术参考,因此具有重要研究意义和实用价值。  相似文献   

19.
《Composite Interfaces》2013,20(5-7):603-614
In this study composites of high density polyethylene (HDPE) with various SiO2 content were prepared by melt compounding using maleic anhydride grafted polyethylene (PE-g-MAH) as a compatibilizer. The composites containing 2, 4 and 6% by weight of SiO2 particles were melt-blended in a co-rotating twin screw extruder. In all composites, polyethylene-graft-maleic anhydride copolymer (PE-g-MAH, with 0.85% maleic anhydride content) was added as a compatibilizer in the amount of 2% by weight. Morphology of inorganic silica filler precipitated from emulsion media was investigated. Mechanical properties and composite microstructure were determined by tensile tests and scanning electron microscopy technique (SEM). Tensile strength, yield stress, Young's modulus and elongation at break of PE/SiO2 composites were mainly discussed against the properties of PE/PE-g-MAH/SiO2 composites. The most pronounced increase in mechanical parameters was observed in Young's modulus for composites with polyethylene grafted with maleic anhydride. The increase in the E-modulus of PE/PE-g-MAH/SiO2composites was associated with the compatibility and improvement of interfacial adhesion between the polyethylene matrix and the nanoparticles, leading to an increased degree of particle dispersion. This finding was verified on the basis of SEM micrographs for composites of PE/PE-g-MAH/4% by weight of SiO2. The micrographs clearly documented that addition of only 2 wt% of the compatibilizer changed the composite morphology by reducing filler aggregates size as well as their number. Increased adhesion between the PE matrix and SiO2 particles was interpreted to be a result of interactions taking place between the polar groups of maleic anhydride and silanol groups on the silica surface. These interactions are responsible for reduction of the size of silica aggregates, leading to improved mechanical properties.  相似文献   

20.
Highland barley is a grain crop grown in Tibet, China. This study investigated the structure of highland barley starch using ultrasound (40 kHz, 40 min, 165.5 W) and germination treatments (30℃ with 80% relative humidity). The macroscopic morphology and the barley's fine and molecular structure were evaluated. After sequential ultrasound pretreatment and germination, a significant difference in moisture content and surface roughness was noted between highland barley and the other groups. All test groups showed an increased particle size distribution range with increasing germination time. FTIR results also indicated that after sequential ultrasound pretreatment and germination, the absorption intensity of the intramolecular hydroxyl (–OH) group of starch increased, and hydrogen bonding was stronger compared to the untreated germinated sample. In addition, XRD analysis revealed that starch crystallinity increased following sequential ultrasound treatment and germination, but a-type of crystallinity remained after sonication. Further, the Mw of sequential ultrasound pretreatment and germination at any time is higher than that of sequential germination and ultrasound. As a result of sequential ultrasound pretreatment and germination, changes in the content of chain length of barley starch were consistent with germination alone. At the same time, the average degree of polymerisation (DP) fluctuated slightly. Lastly, the starch was modified during the sonication process, either prior to or following sonication. Pretreatment with ultrasound illustrated a more profound effect on barley starch than sequential germination and ultrasound treatment. In conclusion, these results indicate that sequential ultrasound pretreatment and germination improve the fine structure of highland barley starch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号