首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
朱勇  李宝华  谢国锋 《物理学报》2012,61(4):46103-046103
本文先应用分子动力学模拟BaTiO3体系在初级击出原子(primary knock-on atom, PKA)轰击下缺陷产生和复合的动力学过程, 模拟结果表明:PKA的方向和能量对缺陷数目有重要影响, 并计算了Ba, O和Ti原子的平均位移阈能分别为69 eV, 51 eV和123 eV, 远大于SRIM程序默认的位移阈能25 eV. 然后应用蒙特卡罗软件包SRIM, 模拟质子在BaTiO3薄膜中的能量损失过程, 比较位移阈能对模拟结果的影响, 分析质子能量和入射角度对空位数量以及分布的影响. 结果表明空位数量随着质子能量增加而增加, 增加的速率随能量的增加是降低的;当入射角度大于60°, 空位数量随入射角增大而明显减少.  相似文献   

2.
O. Checa  R. A. Vargas  J. E. Diosa 《Ionics》2014,20(4):545-550
The dispersion curves of the dielectric response for KHSeO4 were obtained in the radio frequency range at several isotherms below the fast proton conducting phase (T?<?415 K). The results reveal a distinct dielectric relaxation at low frequency, which is about 682 Hz at 320 K, and then, it shifts to higher frequencies (~10 kHz) as the temperature increases. The f max vs. reciprocal T shows an activated relaxation process with an activation energy of 0.5 eV, which is in close agreement with that associated with transport of charge carriers. We suggest that the observed dielectric relaxation could be attributed to polarization induced by the proton jump and selenate tetrahedral reorientations. The displacement of mobile H+ proton accompanied by SeO 4 ??2 tetrahedra reorientations creates structural distortion in both sublattices which induce localized dipoles like HSeO 4 ? .  相似文献   

3.
The optical reflectance, dielectric functions and phonon vibrational modes of Ti1?x Nb x N (0≤x≤0.77) thin films are reported. Films of 500-nm thickness were deposited on 316LN nuclear grade stainless steel substrates by radio-frequency magnetron sputtering. The reflectance spectra of the films, in the energy range 1.5 to 5.5 eV, are fitted using the Drude–Lorentz model as the response of one Drude parameter and four Lorentz oscillators. It is demonstrated that the properties studied are dependent on Nb concentration, x, and exhibit a behavior transition threshold at x=0.5. The optical properties studied are closer to TiN for x<0.5 and resemble NbN for x>0.5. For example, the films showed a minimum in reflectance at ~2.33 eV for values of x up to 0.5, corresponding to the Ti–N charge transfer band. Increase in Nb concentration beyond 0.5 caused a large shift in this energy to 3.2 eV, corresponding to the Nb–N charge transfer excitation. Similarly, the real part of the dielectric function is characterized by a screened plasma energy of 2.25 eV for values of x<0.5 (~TiN) and 3.25±0.2 eV for x>0.5 (~NbN). The energy at which the loss function reaches a peak value increases linearly for values of x from 0 to 0.41 and decreases very drastically for x>0.5. Phonon-vibrational modes of Ti1?x Nb x N thin films studied by Raman spectroscopy show that Nb substitution in TiN results in first-order Raman scattering. The single-phonon acoustical peak at 270 cm?1 of TiN shifted to 265 cm?1 for x=0.77, while the two-phonon acoustical peak of TiN at 620 cm?1 shifted to 630 cm?1 for the same value of x. The reasons for the existence of a behavior transition threshold in Nb concentration are discussed.  相似文献   

4.
Preliminary results of radiation damage simulations in rutile, TiO2, are presented. Apart from the strong anisotropy of threshold energy with impulse direction, it has been found that there is a very low threshold energy for oxygen displacement in the basal plane along some <100> directions, of about 10 eV. The defect structures are not simple, with three-ion crowdions and interstitial-divacancy complexes being favoured over interstitials and vacancies.  相似文献   

5.
Dielectric and nonohmic properties of CaCu3Ti4O12 (CCTO) ceramics can be modified by addition of SrTiO3 (STO) in different molar proportions which were fabricated by a modified sol-gel method. XRD results indicated that all modified ceramics showed mixed phase consisting of both CCTO and STO. SEM images and grain size distribution probability also presented the change of microstructure with the addition of STO. The dielectric loss of the CCTO/0.4STO ceramics sintered at 1000 °C can be lower than 0.02 in a wide frequency (1 kHz–10 kHz), especially at 1 kHz, the dielectric loss of this sample is as low as 0.012. Furthermore, excellent nonlinear I–V electrical characteristic (high breakdown voltage to 54.15 kV/cm for CCTO/0.4STO sintered at 1000 °C) was observed as well. All the results indicated that the addition of STO does improve the dielectric properties and nonohmic characteristics of CCTO ceramics dramatically.  相似文献   

6.
A systematic study on the band-structure modulation of SrTiO3 (STO) by hydrogenation has been done by means of ultraviolet-visible (UV-vis) absorption, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) and photoluminescence (PL). Hydrogenation of STO was performed by annealing STO in the forming gas of H2:N2 (5 %:95 %) at elevated temperatures (mostly at 1000 °C). It is found that electron transfer to the defect states within the band gap of STO due to hydrogenation brings to STO visible absorption, decrease in intrinsic PL intensity, Fermi level shift, elimination of the EPR signals, and finally, an enhancement of photocatalytic ability.  相似文献   

7.
Abstract

The energy dependence of low dose damage production in commercial and high purity polycrystalline tungsten wires was studied near 350 K with 1.6 to 2.4 MeV electrons. From resistivity measurements at 291 K the threshold energy for the onset of observable damage was determined as 50 × 2 eV. An ‘effective’ threshold of 52 ±2 eV was also determined by directly fitting the energy dependence of the damage rates to theoretical displacement cross sections calculated from step-function displacement probabilities. A decrease of two orders of magnitude in impurity content reduced damage rates by about a factor of two but did not affect threshold. These results combined with current defect recovery models for tungsten, low temperature threshold data, and computer-calculated bcc damage theory suggest: (1) Observed damage consisted of equal concentrations of vacancies and impurity-trapped Stage I free interstitials. (2) Across Stage II (100 K to 600 K) onset threshold should be within 50 ±2 eV. (3) Minimum recoil energy required for free interstitial production near 0 K is 53 ± 5 eV. (4) Threshold has little dependence on crystal direction. An empirical method is presented for predicting threshold energies in the bcc transition metals by assuming the directional dependence of threshold is directly proportional to that of Young's modulus. By the use of one universal proportionality constant (1.2 × 10?11 eV.cm2/dyne), thresholds for a number of metals and directions are calculated and shown to have significantly better agreement with experiment than the best available theoretical estimates.  相似文献   

8.
Lead-free polycrystalline ceramic 0.55Ba(Zr0.2Ti0.8)O3–0.45(Ba0.7Ca0.3)TiO3 (0.55BZT–0.45BCT) was synthesized by sol–gel method and the dielectric, impedance and optical properties of this ceramic were studied. X-ray diffraction analysis revealed the formation of pure perovskite phase with the coexistence of tetragonal and rhombohedral structures. The high value of dielectric constant (~6,985) with low dielectric loss (~0.013) was obtained at room temperature. Bulk and grain boundary resistances were measured by impedance analysis, which revealed negative temperature coefficient of resistance behaviour in this ceramic. The estimated value of optical band gap was found to be ~3.16 eV, which is related to the presence of intermediate energy levels. Two emission bands one at ~365 nm (UV region) and another at ~465 nm (blue region) were observed in photoluminescence spectrum at room temperature.  相似文献   

9.
The effect of an 8 MeV electron-beam on the structural, optical and dielectric properties of polystyrene films has been investigated respectively by means of Fourier transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV–VIS) spectroscopy and electrical impedance (LCR) analysis over a radiation dose in the range of 50–250 kGy using a Microtron accelerator. The FTIR spectral analysis shows no change in the overall structure of the irradiated polystyrene films, except a minor change in the intensity of a few peaks in the FTIR spectrum, indicating that polystyrene is resistant to electron-beam irradiation over the range of radiation doses investigated. The optical band gap analysis using the UV–VIS absorption spectra of the polystyrene shows a small decrease in the optical band gap (E g) and the activation energy with an increase in electron doses. Further, the dielectric measurements over a frequency range of 100 Hz to 1 MHz for the electron-beam-irradiated polystyrene films show that both the dielectric constant and the dielectric loss increase with an increase in electron radiation dose, which may be ascribed to the formation of defect sites in the band gap of polystyrene as a consequence of molecular chain scission in the polymer films upon irradiation.  相似文献   

10.
S. Al-Rajoub 《哲学杂志》2015,95(22):2466-2481
The structural, electronic and optical properties of mercury cadmium telluride (Hg1?xCdxTe; x = 0.0, 0.25, 0.5, 0.75) alloys are studied using density functional theory within full-potential linearized augmented plane wave method. We used the local density approximation (LDA), generalized gradient approximation (GGA), hybrid potentials, the modified Becke–Johnson (LDA/GGA)-mjb and Hubbard-corrected functionals (GGA/LDA + U), for the exchange-correlation potential (Eex). We found that LDA functional predicts better lattice constants than GGA functional, whereas, both functionals fail to predict the correct electronic structure. However, the hybrid functionals were more successful. For the case of HgTe binary alloy, the GGA + U functional predicted a semi-metallic behaviour with an inverted band gap of ?0.539 eV, which is closest to the experimental value (?0.30 eV). Ternary alloys, however, are found to be semiconductors with direct band gaps. For the x = 0.25 and 0.50, the best band gaps are found to be 0.39 and 0.81 eV using LDA-mbj functional, whereas, the GGA-mbj functional predicted the best band gap of 1.09 eV for Hg0.25Cd0.75Te alloy, which is in a very good agreement with the experimental value (1.061 eV). The optical properties of the alloys are obtained by calculating the dielectric function ?(ω). The peaks of the optical dielectric functions are consistent with the electronic gap energies of the alloys.  相似文献   

11.
L.P. Teo 《Ionics》2017,23(2):309-317
In this work, Li2SnO3 has been synthesized by the sol–gel method using acetates of lithium and tin. Thermogravimetric analysis (TGA) has been applied to the precursor of Li2SnO3 to determine the suitable calcination temperature. The formation of the compound calcined at 800 °C for 9 h has been confirmed by X-ray diffraction (XRD) analysis. The Li2SnO3 is then pelletized and electrically characterized by using electrochemical impedance spectroscopy (EIS) in the frequency range from 50 Hz to 1 MHz. The complex impedance spectra clearly show the dominating presence of the grain boundary effect on electrical properties whereas the complex modulus plots reveal two semicircles which are due to the grain (bulk) and grain boundary. The spectra of imaginary parts of both impedance and modulus versus frequency show the existence of peaks with the modulus plots exhibiting two peaks that are ascribed to the grain and grain boundary of the material. The peak maximum shifts to higher frequency with an increase in temperature and the broad nature of the peaks indicates the non-Debye nature of Li2SnO3. The activation energy associated with the dielectric relaxation obtained from the electrical impedance spectra is 0.67 eV. From the electric modulus spectra, the activation energies related to conductivity relaxation in the grain and grain boundary of Li2SnO3 are 0.59 and 0.69 eV, respectively. The conductivity–temperature relationship is thermally assisted and obeys the Arrhenius rule with the activation energy of 0.66 eV. The conduction mechanism of Li2SnO3 is via hopping.  相似文献   

12.
The current work is dedicated to investigation of the interaction between self-assembled polar molecules of fullerene fluoride C60F18 with the chemically active surface Ni(100) under radiation and heat treatments. X-ray photoelectron spectroscopy is used in combination with quantum-chemical simulation. For the first time, the transformation of an as-deposited dielectric continuous 2D thin film to a 3D island-type assembly with molecular ordering within the islands is shown to take place. The degree of coverage of the Ni surface by C60F18 islands (0.6–0.7) and their height (~6 nm) are estimated. Quantum-chemical simulation shows that the chemisorption energy of the C60F18 molecule on the Ni surface equals ~6.6 eV and fluorine atoms are located at a distance of 1.9 Å above the Ni surface. The results of the investigation provide an opportunity to create nanoscale ordered structures with local changes in the work function.  相似文献   

13.
Optically clear glasses in the ZnO–Bi2O3–B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz–10 MHz)-independent dielectric characteristics associated with significantly low loss (D?=?0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18?±?4 ppm °C?1 in the 35–250 °C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.  相似文献   

14.
A ceramic SmAlO3 (SAO) sample is synthesized by the solid-state reaction technique. The Rietveld refinement of the X-ray diffraction pattern has been done to find the crystal symmetry of the sample at room temperature. An impedance spectroscopy study of the sample has been performed in the frequency range from 50 Hz to 1 MHz and in the temperature range from 313 K to 573 K. Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The Cole–Cole model is used to analyze the dielectric relaxation mechanism in SAO. The temperature-dependent relaxation times are found to obey the Arrhenius law having an activation energy of 0.29 eV, which indicates that polaron hopping is responsible for conduction or dielectric relaxation in this material. The complex impedance plane plot of the sample indicates the presence of both grain and grain-boundary effects and is analyzed by an electrical equivalent circuit consisting of a resistance and a constant-phase element. The frequency-dependent conductivity spectra follow a double-power law due to the presence of two plateaus.  相似文献   

15.
In this paper, the radiation defects induced by the swift heavy ions and the recoil atoms in amorphous SiO2 were studied. The energy of recoil atoms induced by the incident Au ions in SiO2 was calculated by using Monte Carlo method. Results show that the average energies of recoils reach the maximum (200?eV for Si and 130?eV for O, respectively) when the incident energy of Au ion is 100?MeV. Using Tersoff/zbl potential with the newly built parameters, the defects formation processes in SiO2 induced by the recoils were studied by using molecular dynamics method. The displacement threshold energies (Ed) for Si and O atoms are found to be 33.5 and 16.3?eV, respectively. Several types of under- and over-coordinated Si and O defects were analyzed. The results demonstrate that Si3, Si5, and O1 are the mainly defects in SiO2 after radiation. Besides, the size of cylindrical damage region produced by a single recoil atom was calculated. The calculation shows that the depth and the radius are up to 2.0 and 1.4?nm when the energy of recoils is 200?eV. Finally, it is estimated that the Au ion would induce a defected track with a diameter of 4?nm in SiO2.  相似文献   

16.
In this study, the electrical, dielectric and morphological analysis of composite solid polymer electrolytes containing polyethylene oxide, alumina nano-fillers and tetrapropylammonium iodide are conducted. The temperature dependence of conductivity shows activation energy of 0.23, 0.20 and 0.29 eV for electrolytes containing 0, 5 and 15 wt.% alumina, respectively, when data fitted to the Arrhenius equation. These activation energy values are in good agreement with those determined from dielectric measurements. The result confirms the fact that conductivity is activated by both the mobility and the charge carrier density. The conductivity isotherms demonstrated the existence of two peaks, at 5 and 15 wt.% Al2O3 composition. The highest conductivity values of 2.4 × 10?4, 3.3 × 10?4 and 4.2 × 10?4 S cm?1 are obtained for the sample with 5 wt.% Al2O3 at 0, 12 and 24 °C, respectively, suggesting an enhancement of conductivity compared with that of alumina free samples.  相似文献   

17.
Poly (acrylonitrile) (PAN) and ammonium chloride (NH4Cl)-based proton conducting polymer electrolytes with different compositions have been prepared by solution casting technique. The amorphous nature of the polymer electrolytes has been confirmed by XRD analysis. The FTIR analysis confirms the complex formation of the host polymer (PAN) with the salt (NH4Cl). DSC measurements show a decrease in Tg with the increase in salt concentration. The conductivity analysis shows that the 25 mol% ammonium chloride doped polymer electrolyte has a maximum ionic conductivity, and it has been found to be 6.4 × 10?3 Scm?1, at room temperature. The temperature dependence of conductivity of the polymer electrolyte complexes appears to obey the Arrhenius nature. The activation energy (Ea = 0.23 eV) has been found to be low for 25 mol% salt doped polymer electrolyte. The dielectric behavior has been analyzed using dielectric permittivity (ε*), and the relaxation frequency (τ) has been calculated from the loss tangent spectra (tan δ). Using this maximum ionic conducting polymer electrolyte, the primary proton conducting battery with configuration Zn + ZnSO4·7H2O/75 PAN:25 NH4Cl/PbO2 + V2O5 has been fabricated and their discharge characteristics have been studied.  相似文献   

18.
This paper is devoted to the study of the electrical properties of Au/HfO2/TiN metal–insulator–metal (MIM) capacitors in three distinctive modes: (1) alternative mode (Cf), (2) dynamic regime [thermally stimulated currents, TSCs I(T)] and (3) static mode [I(V)]. The electrical parameters are investigated for different temperatures. It is found that capacitance frequency Cf characteristic possesses a low-frequency dispersion that arises for high temperature (T > 300 °C). Accordingly, the loss factor exhibits a dielectric relaxation (with an activation energy E a ~ 1.13 eV) which is intrinsically related to the diffusion of oxygen vacancies. The relaxation mechanisms of electrical defects in a dynamic regime (TSCs) analysis show that defect related to the TSC peak observed at 148.5 °C (E a ~ 1 eV) is in agreement with impedance spectroscopy (Cf). On the other hand, when the MIM structures are analyzed in static mode, the IV plots are governed by Schottky emission. The extrapolation of the curve at zero field gives a barrier height of 1.7 eV.  相似文献   

19.
The dependence of the displacement cross section of Cu on electron energy and crystal orientation has very accurately been determined by high-voltage electron microscopy. The minimum displacement threshold energy of (9.5 ± 0.5) eV occurs at an angle of 10° from 〈110〉 directions.  相似文献   

20.
Jianhua Liu  Libo Zhang  Lei Xu 《Ionics》2018,24(5):1377-1383
First-principles investigation of elastic, electronic, and optical properties of orthorhombic Na3AlF6 has been carried out by DFT using plane-wave pseudo-potentials within the LDA and GGA. Calculated lattice parameters agree well with experimental results. From calculated elastic constants, Na3AlF6 is a mechanically stable anisotropic and behaves in a ductile manner. Electronic structure analysis indicates that Na3AlF6 behaves as an insulator with a direct band gap of 6.065 eV in LDA and 5.868–5.949 eV in GGA. DOS, population analysis, and charge densities difference indicate that Al-F bonds are mainly ionic as well as partially covalent due to the hybridization of F-2p and Al-3s (3p) states. Moreover, the imaginary part of calculated dielectric function ε2(ω) shows three prominent peaks due to the inter band transitions F 2p states→Na 3s states. From calculated ε (ω), other optical properties such as reflectivity and refractive index are also obtained up to the photon energy range of 40 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号