首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
刘鹏  贺颖  李俊  朱刚强  边小兵 《物理学报》2007,56(9):5489-5493
采用固相反应法制备了CaCu3Ti4-xNbxO12(x=0,0.01,0.04,0.08,0.2)陶瓷,样品在x取值范围内形成了连续固溶体.在40Hz—110MHz频率范围对样品进行了介电频谱分析,实验结果表明,与纯CaCu3Ti4O12不同,含Nb试样除了在频率大于10kHz范围内出现的德拜弛豫 关键词: 巨介电常数 德拜弛豫 阻挡层电容 等效电路  相似文献   

2.
Single-phase cubic Ba(Fe,Nb)0.5O3 (BFN) powder was synthesized by solid-state reaction at 900, 1000, 1100, 1200 °C for 4 h in air. X-ray diffraction indicated that the BFN oxide mixture calcined at 1200 °C crystallizes to the pure cubic perovskite phase. The crystallite size of the BFN increases slightly with increasing temperature, while the lattice strain progressively decreases. BFN ceramics were produced from this powder by sintering at 1350–1400 °C for 4 h in air. Samples prepared under these conditions achieved up to 97.4% of the theoretical density. The temperature dependence of their dielectric constant and loss tangent, measured at difference frequencies, shows an increase in the dielectric constant with sintering temperature and measurement frequency which is probably due to disorder on the B site ion of the perovskite. The Mössbauer spectra of these sintered BFN ceramics suggests the presence of a superstructure on the B-cation sublattice.  相似文献   

3.
Ba0.6Sr0.4TiO3 ceramics were prepared by a citrate precursor method. The structure and nonlinear dielectric properties of the resulting ceramics were investigated within the sintering temperature range 1200-1300 °C. Adopting fine Ba0.6Sr0.4TiO3 powder derived from the citrate method was confirmed to be effective in reducing the sintering temperatures required for densification. The ceramic specimens sintered at 1230-1280 °C presented relative densities of around 95%. A significant influence of sintering temperature on the microstructure and nonlinear dielectric properties was detected. The discrepancy in nonlinear dielectric behavior among the specimens sintered at different temperatures was qualitatively interpreted in terms of the dielectric response of polar micro-regions under bias electric field. The specimens sintered at 1230 and 1250 °C attained superior nonlinear dielectric properties, showing relatively low dielectric losses (tan δ) of 0.24% and 0.22% at 10 kHz together with comparatively large figure of merits (FOM) of 121 and 142 at 10 kHz and 20 kV/cm, respectively.  相似文献   

4.
LuFeO3 ceramics were prepared, and the dielectric characteristics were investigated together with the structure. A giant dielectric constant step (8000 at 10 kHz, 7200 at 100 kHz, and 4000 at 1 MHz) very similar to that in LuFe2O4 was observed. The dielectric constant dropped quickly when the temperature decreased through a critical temperature which increased significantly when the frequency increased. A very high relaxor-like dielectric peak with strong frequency dispersion was also observed in a higher temperature range. Two obvious corresponding dielectric relaxation peaks were observed on the curve of dielectric loss vs temperature, and all these dielectric relaxations followed the Arrhenius law. The Fe2+/Fe3+ mixed-valence structure and the oxygen vacancy primarily governed these relxor-like dielectric behaviors. However, the present ceramics are not relaxor ferroelectric.  相似文献   

5.
Composite thin film is highly desirable for the dielectric applications. In order to develop composite thin film, a nanocomposite, in which nanosized CaCu3Ti4O12 (CCTO) particles are used as filler and P(VDF?CTrFE) 55/45 mol% copolymer is used as polymer matrix, is investigated. The contents of CCTO in the nanocomposites range from 0% to 50?vol%. The dielectric property of these nanocomposites was characterized at frequencies ranging from 100 Hz to 1 MHz and at temperatures ranging from 200 K to 370 K. A dielectric constant of 62 with a loss of 0.05 was obtained in nanocomposite with 50?vol% CCTO at room temperature at 1 kHz. At the phase transition temperature (??340?K) of the copolymer, a dielectric constant of 150 with a loss less than 0.1 was obtained in this nanocomposite. It is found that the dielectric loss of the nanocomposites is dominated by the polymer which has a relaxation process. Comparing to composites made using microsized CCTO, the nanocomposites exhibit a much lower dielectric loss and a lower dielectric constant. This indicates that the nanosized CCTO particles have a lower dielectric constant than the microsized CCTO particles.  相似文献   

6.
In this paper, low temperature sintering of the Bi2(Zn1/3Nb2/3)2O7 (β-BZN) dielectric ceramics was studied with the use of BiFeO3 as a sintering aid. The effects of BiFeO3 contents and the sintering temperature on the phase structure, density and dielectric properties were investigated. The results showed that the sintering temperature could be decreased and the dielectric properties could be retained by the addition of BiFeO3. The structure of BiFeO3 doped β-BZN was still the monoclinic pyrochlore phase. The sintering temperature of BiFeO3 doped β-BZN ceramics was reduced from 1000 °C to 920 °C. In the case of 0.15 wt.% BiFeO3 addition, the β-BZN ceramics sintered at 920 °C exhibited good dielectric properties, which were listed as follows: εr = 79 and tan δ = 0.00086 at a frequency of 1 MHz. The obtained properties make this composition to be a good candidate for the LTCC application.  相似文献   

7.
(K0.5Na0.5)NbO3 (KNN) based lead free ceramics have been fabricated by a solid state reaction. In this work, LiSbO3 (LS) modified KNN based ceramics were sintered at atmospheric pressure and high density (>96% theoretical) was obtained. The detailed elastic, dielectric, piezoelectric and electromechanical properties were characterized by using the resonance technique combined with the ultrasonic method. The full set of material constants for the obtained polycrystalline ceramics were determined and compared to the pure hot pressed KNN counterpart. KNN-LS polycrystalline ceramic was found to have higher elastic compliance, dielectric permittivity and piezoelectric strain coefficients, but lower mechanical quality factor, when compared to pure KNN, exhibiting a “softening” behavior. However, a high coercive field (∼17 kV/cm) was found for the LS modified KNN material. The properties as a function of temperature were determined in the range of −50-250 °C, showing a polymorphic phase transition near room temperature, giving rise to improved piezoelectric behavior.  相似文献   

8.
The CaCu3Ti4O12/SiO2/CaCu3Ti4O12 (CCTO/SiO2/CCTO) multilayered films were prepared on Pt/Ti/SiO2/Si substrates by pulsed laser deposition method. It has been demonstrated that the dielectric loss and the leakage current density were significantly reduced with the increase of the SiO2 layer thickness, accompanied with a decrease of the dielectric constant. The CCTO film with a 20 nm SiO2 layer showed a dielectric loss of 0.065 at 100 kHz and the leakage current density of 6×10−7 A/cm2 at 100 kV/cm, which were much lower than those of the single layer CCTO films. The improvement of the electric properties is ascribed to two reasons: one is the improved crystallinity; the other is the reduced free carriers in the multilayered films.  相似文献   

9.
CaCu3Ti4O12 ceramics with incorporation of polyvinyl alcohol (PVA) are prepared from the powder synthesized by a solid state reaction. Their electric and dielectric properties are investigated in this study. It is found that adding PVA can dramatically reduce the dielectric loss of CCTO in the low frequency region, and stabilize the dependence of dielectric constant on the measuring frequency. The minimum dielectric loss of 0.045 is obtained from the sample with 8 wt% PVA. The nonlinear coefficient (α) and breakdown electric field (Eb) increase with an increase of PVA binder.  相似文献   

10.
《Current Applied Physics》2010,10(6):1367-1371
Lead-free Bi0.5(Na0.78K0.22)0.5TiO3 (BNKT) piezoelectric ceramics were synthesized by the sol–gel technique. The effects of sintering temperatures on the crystal structure, microstructure, densification, dielectric, ferroelectric and electric field-induced strain behaviors of the BNKT ceramics were investigated. X-ray diffraction patterns exhibited a pure perovskite structure from 1075 to 1150 °C. A scanning electron microscopy study revealed an increase in grain size with increasing sintering temperature. The density of the ceramics sintered at 1150 °C reaches a maximum value of 5.55 g/cm3, which is 96% of the theoretical density. BNKT ceramics sintered at an optimum temperature of 1150 °C exhibited a high remnant polarization of 18.5 μC/cm2, a high electric field-induced strain of 0.20% and dynamic piezoelectric coefficient d331 = (Smax/Emax) of 247 pm/V.  相似文献   

11.
In this work, ((1−x)Ba(Fe1/2Ta1/2)O3-xBa(Zn1/3Ta2/3)O3), ((1−x)BFT-xBZT) ceramics with x = 0.00–0.12 were synthesized by the solid–state reaction method. X-ray diffraction data revealed that both the powders and ceramics were of a pure-phase cubic perovskite structure. All ceramics showed large dielectric constants. For the x = 0.12 sample, a very high dielectric constant (>20,600) was observed. A lowering in the dielectric loss compared to pure BFT ceramics was observed with the BZT addition. The impedance measurements indicated that BZT has a strong effect on the bulk grain and grain boundary resistance of BFT ceramics. These results are in agreement with the measured dielectric properties. Based on dielectric and impedance results, (1−x)BFT-xBZT ceramics could be of great interest for high performance dielectric materials applications due their giant dielectric constant behavior.  相似文献   

12.
Pyrochlore-free lead zirconate titanate – lead zinc niobate ceramics have been systematically investigated in the as-sintered condition as well as after annealing. The ceramics were characterized by dielectric spectroscopy and Sawyer–Tower polarization (PE) measurements. The powders of Pb[(Zr1/2Ti1/2)(1−x)–(Zn1/3Nb2/3)x]O3, where x = 0.1, 0.3 and 0.5 were prepared using the columbite–(wolframite) precursor method. The general trend seems to indicate that the annealed samples become more normal-ferroelectric-like behavior as opposed to the relaxor-ferroelectric-like behavior observed in the as-sintered state. The as-sintered 0.9PZT–0.1PZN ceramic exhibited weak relaxor-ferroelectric behavior, with a relatively low dielectric constant maximum of 14,000 measured at 1 kHz. Annealing resulted in a transition to normal-ferroelectric-like behavior, a shift in the dielectric maximum temperature from 360 °C to 350 °C, and a dramatic increase in the dielectric constant at 1 kHz to a maximum value of 35,000 for the longer anneal. After thermal annealing at 900 °C for one week a strong enhancement of remanent polarization (Pr) was observed.  相似文献   

13.
The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and X-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T. At low temperatures the dielectric constant shows a minor but significant dependence on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.  相似文献   

14.
The nonohmic electrical features of (Ca1/4,Cu3/4)TiO3 perovskite ceramics, which have very strong gigantic dielectric is believed originate from potential barriers at the grain boundaries. In the present study, we used the admittance and impedance spectroscopy technique to investigate (Ca1/4,Cu3/4)TiO3 perovskite ceramics with low nonohmic electrical properties. The study was conducted under two different conditions: on as-sintered ceramics and on ceramics thermally treated in an oxygen-rich atmosphere. The results confirm that thermal treatment in oxygen-rich atmospheres influence the nonohmic properties. Annealing at oxygen-rich atmospheres improve the nonohmic behavior and annealing at oxygen-poor atmospheres decrease the nonohmic properties, a behavior already reported for common metal oxide nonohmic devices and here firstly evidenced for the (Ca1/4,Cu3/4)TiO3 perovskite related materials. The results show that oxygen also influences the capacitance values at low frequencies, a behavior that is indicative of the Schottky-type nature of the potential barrier.  相似文献   

15.
《Current Applied Physics》2015,15(11):1332-1336
A CaBi4Ti4O15 (CBTO) ceramic in which the Bi2O3 concentration was controlled from 0 to 10 wt% was fabricated using a solid-state reaction method. Structural analysis by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) indicated differences in the preferred grain orientation and size of the plate-like grains according to the Bi2O3 concentration. The orientation of plate-like grains was also found to vary with the Bi2O3 concentration. There was no noticeable change trend of dielectric properties with different Bi2O3 concentrations. Relatively low dielectric constants (about 135) were exhibited by the CBTO ceramic with 1 wt% Bi2O3 and CBTO ceramic with 10 wt% Bi2O3 only, and similar values (about 150) were exhibited by the other ceramics. The dielectric loss exhibited a low value in the range of 0.01–0.09 for all samples (frequency range of 1–100 kHz). Regarding the ratio changes of the piezoelectric coefficient (d33) and the ratio of a-axis orientation of plate-like grains, the trends of these two values were shown to be similar. These results suggest that the addition of Bi2O3 greatly influences the microstructure of CBTO ceramics, including the grain size and orientation of plate-like grains. In particular, the change in the preferred grain orientation is closely related to the change in the piezoelectric properties.  相似文献   

16.
《Current Applied Physics》2010,10(4):1148-1151
Dense Ni0.37Cu0.20Zn0.43Fe1.92O3.88/(Ba0.6Sr0.4)TiO3 composite thick films were prepared through screen printing method and sintered at 880 °C. The powder XRD patterns confirm the coexistence of the two phases. The dielectric and magnetic properties are also reported. The results show that this kind of magnetic–dielectric composite thick films, possessing high permittivity and saturation magnetization, moderate dielectric tunability, and very low dielectric loss and coercivity, could be used in high-frequency communications for the capacitor–inductor integrating devices such as electromagnetic interference filters and antennas.  相似文献   

17.
Dense, homogeneous, and fine-grained multiferroic BaTiO3/(Ni0.5Zn0.5)Fe2O4 composite ceramics are synthesized by a novel powder-in-sol precursor hybrid processing route. This route includes the dispersion of nanosized BaTiO3 ferroelectric powders prepared via conventional sold-state ceramic process into (Ni0.5Zn0.5)Fe2O4 ferromagnetic sol-gel precursor prepared via a sol-gel wet chemistry process. The composite ceramics show coexistence of obvious ferroelectric and ferromagnetic hysteresis loops at room temperature. Very low dielectric loss of about 0.02–0.0067 in the range of 10 kHz–10 MHz can be achieved, which is about an order of magnitude lower than the results of many reports using conventional processes at room temperature. The combination of high permeability and permittivity with low losses in the ceramics enables significant miniaturization of electronic devices based on the ceramics.  相似文献   

18.
Fluorinated ceramics with initial composition (1−x)CaTiO3+xPbF2+xLiF were sintered at 950 °C. The X-ray diffraction (XRD) patterns of the samples showed the formation of a novel solid solution in the initial composition range 0⩽x⩽0.125. SEM observations were performed on fractured ceramics and DSC analyses were carried out from room temperature up to 600 °C. Three second-order phase transitions were detected for all the samples. Capacitors were prepared from the pre-sintered ceramics then dielectric measurements were performed as a function of temperature in the frequency range 102–4×107 Hz. The ε′r−T curves exhibit the profile of dielectrics for class I capacitors, however the values of tan δ are too high (tan δ⩾1%).  相似文献   

19.
0.5 mol% Nd-doped (Ba0.85Ca0.15)(Ti0.9Hf0.1)O3 (BCTH-Nd) lead-free ceramics were prepared by a solid-phase twin crystal method, where the effects of sintering condition on structure, electrical and optical properties were studied. All the sintered BCTH-Nd ceramics exhibit pure perovskite structure, dense microstructure with several micron grain size, which tends to increase with elevating sintering temperature. All synthesized ceramics have complex dielectric behavior, which presents normal ferroelectrics characteristic with slight dispersion phenomenon. The BCTH-Nd ceramics exhibit excellent piezoelectric and ferroelectric properties and acceptable dielectric performance when sintered at 1480 °C for 2 h. Under 269 nm light excitation, several fluorescent emission peaks are excited with a whole indigo fluorescence, where the strongest emission peak is emitted at 473 nm, corresponding to the 4G3/2 → 4I9/2 energy level transition of Nd3+. Multifunctional performance is fulfilled in the lead-free BCTH ceramics via rare earth doping, which can broaden the application fields of piezoelectric-based materials.  相似文献   

20.
We report the use of a novel powder-in-sol precursor hybrid processing route to synthesize dense, homogeneous, and fine-crystalline Ba0.6Sr0.4TiO3-MgO (BST-MgO) ceramics as well as the study of the sintering behavior, microstructures, and dielectric properties of the ceramics. Nanosized BST powders are dispersed into BST sol-gel precursor and uniformly distributed BST slurry is obtained after ball-milling mixing. Mg(NO3)·6H2O solution is added to the BST slurry to give homogeneous BST-MgO slurry upon ball-milling mixing. The BST-MgO slurry is dried and calcined prior to pressing and sintering at low temperatures of 1200-1300 °C to form the ceramics. The ceramics possess very low dielectric loss tangent below 0.005 for frequency above 1 kHz and for temperature in the range −190-80 °C. The dielectric constant and dielectric tunability increase, while the ferroelectric transition broadening decreases, with increasing average grain size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号