首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍在52ns高功率脉冲作用下,带绕金属玻璃环的脉冲特性,并详细地分析金属玻璃环有无层间绝缘对其磁性能的影响情况。金属玻璃环与铁氧体环的脉冲特性结果的对比表明,有层间绝缘的金属玻璃环磁特性明显优于铁氧体环的磁特性。  相似文献   

2.
在CuZr二元大块金属玻璃的基础上,利用铜模吸铸方法制备出了添加Al组元的CuZr 基大块 金属玻璃.CuZr基大块金属玻璃在很宽的成分范围内有很强的玻璃形成能力,在Al含量从4% 到8%之间,CuZr基大块金属玻璃都可以做出直径至少5 mm的非晶样品.通过实验分析,解释 了CuZr基大块金属玻璃具有良好玻璃形成能力的物理机理.CuZr基金属玻璃组分简单、成本 低廉,有潜在的应用价值;同时,制备CuZr基金属玻璃的方法为开发新的大块金属玻璃体系 提供了一条切实有效的途经. 关键词: 大块金属玻璃 玻璃形成能力 CuZr基金属玻璃  相似文献   

3.
刘娟  胡锐  范志强  张振华 《物理学报》2017,66(23):238501-238501
基于密度泛函理论的第一性原理计算方法,研究了多种过渡金属(TM)掺杂扶手椅型氮化硼纳米带(ABNNR-TM)的结构特点、磁电子特性及力-磁耦合效应.计算的结合能及分子动力学模拟表明ABNNRTM的几何结构是较稳定的,同时发现对于不同的TM掺杂,ABNNRs能表现出丰富的磁电子学特性,可以是双极化磁性半导体、一般磁性半导体、无磁半导体或无磁金属.双极化磁性半导体是一种重要的稀磁半导体材料,它在巨磁阻器件和自旋整流器件上有重要的应用.此外,力-磁偶合效应研究表明:ABNNR-TM的磁电子学特性对应力作用十分敏感,能实现无磁金属、无磁半导体、磁金属、磁半导体、双极化磁性半导体、半金属等之间的相变.特别是呈现的宽带隙半金属对于发展自旋电子器件有重要意义.这些结果表明:可以通过力学方法来调控ABNNR-TM的磁电子学特性.  相似文献   

4.
孙炜海  张超群  鞠桂玲  潘晶雯 《物理学报》2018,67(19):194303-194303
将具有力电磁耦合性能的夹层引入到压电/压磁声子晶体中,在保持单胞长度为固定值的情况下,分别改变磁电弹夹层的厚度、磁电弹夹层中压电材料的体积分数和磁电弹夹层中压电材料的种类;并利用传递矩阵法和Bloch定理,得到波数k与频率ω的色散关系;通过色散关系图分析不同的磁电弹夹层对压电/压磁声子晶体带隙特性的影响.研究发现:当磁电弹夹层厚度增加时,带隙的中心频率上升,带隙宽度变宽;当磁电弹夹层中压电材料体积分数增加时,带隙中心频率下降,第一带隙宽度变窄,第二带隙宽度增加,第三带隙宽度保持不变;当磁电弹夹层中的压电材料种类不同时,带隙的中心频率和带隙宽度有明显的改变;磁电弹夹层对压电/压磁声子晶体带隙中心频率的影响在高频区比低频区更显著.  相似文献   

5.
崔晓  徐保臣  王知鸷  王丽芳  张博  祖方遒 《物理学报》2013,62(1):16101-016101
以1at% Ag元素分别等量替代Zr57Cu20Al10Ni8Ti5金属玻璃的各个组元,利用差示扫描量热升温分析获得不同试样的热力学参数,并结合不同尺寸(Φ8,Φ10,Φ12)吸铸试样的X-射线衍射分析结果,考察、验证元素替代后合金的实际玻璃形成能力及热稳定性的变化规律.经比较发现,Ag替代Ti元素,其玻璃形成能力显著提高(直径实际增大4 mm),同时热稳定性也明显改善,且临界冷却速率也明显降低,而Ag替代其他组元却无明显规律.针对玻璃形成能力的相关数据比较分析表明,本文结果未显示符合其Inoue的尺寸准则,混合焓判据也未显示出明显符合的现象.通过对堆垛密度的计算发现,1 at% Ag替代Ti元素后使金属玻璃体系内部的堆垛密度增加.通过动力学分析,从晶化激活能、晶化反应速率常数两方面探讨了元素替代对玻璃形成能力和热稳定性的作用机理.  相似文献   

6.
潘明祥  汪卫华 《物理》2002,31(7):453-460
在足够高的冷却速度下,如同其他大多数物质一样,金属合金熔体在冷却到室温的过程中能够经过玻璃化转变过程变成非晶态固体--金属玻璃.金属玻璃因其具有许多优异和独特的物理、化学和力学性能而一直受到很大的关注.在过去,由于玻璃形成能力的限制,金属合金只能制成厚度为数十微米的薄带状金属玻璃,因而其应用范围受到极大的限制.通过对金属合金的组成、熔体的过冷与稳定性及玻璃形成能力的关系研究,人们用常规的方法在较低的冷却速度下就能在许多金属合金体系中形成三维尺度都达毫米至数厘米的块体金属玻璃,这为金属玻璃获得广泛的应用奠定了基础.  相似文献   

7.
不透明玻璃显现出的曙光——块体金属玻璃的发现与应用   总被引:4,自引:0,他引:4  
潘明祥  汪卫华 《物理》2002,31(7):453-460
在足够高的冷却速度下,如同其他大多数物质一样,金属合金溶体在冷冷却到室温的过程中能够经过玻璃化转变过程变成非晶态固体——金属玻璃。金属玻璃因其具有许多优异和独特的物理、化学和力学性能而一直受到很大的关注。在过去,由于玻璃形成能力的限制,金属合金只能制成厚度为数十数米的薄带状金属玻璃,因而其应用范围受到极大的限制。通过对金属合金的组成、溶体的过冷与稳定性及玻璃形成能力的关系研究,人们用常规的方法在较低的冷却速度下就能在许多金属合金体系中形成三给尺度都达毫米至数厘米的块体金属玻璃,这为金属玻璃获得广泛的应用奠定了基础。  相似文献   

8.
于海滨  杨群 《物理学报》2017,66(17):176108-176108
非晶态物质处于热力学非平衡状态,稳定性是非晶态材料应用的重要瓶颈,也是理论研究的关键问题.最近人们开发出相当于普通金属玻璃退火上百万年的"超稳定玻璃",为研究非晶态材料的稳定性和非晶态物质的本质提供了新契机.本文简要介绍超稳定玻璃的特点、形成机理以及其对非晶态物理学基本问题提供的新见解和新思路.  相似文献   

9.
张松  屈绍波  马华  谢峰  徐卓 《物理学报》2009,58(6):3961-3965
基于双平行金属线结构,将金属线宽度增大,变为金属条,同时在金属条结构单元中部引入缺口,使中部变细.由于等离子体效应,该双平行金属条结构在一定频段等效介电常数为负;又由于单元结构中部较细,使得该结构在一定频率会发生强烈的磁谐振.通过模拟仿真研究发现这种结构在X波段可以实现εμ同时为负.出现双负(ε<0,μ<0)的频段会随着谐振频率的变化而变化.理论分析表明谐振频率与金属条宽度、缺口高度及中部宽度有关,仿真结果同分析一致. 关键词: 左手材料 磁谐振 负磁导率 平行金属条  相似文献   

10.
何开元  熊湘沅 《物理学报》1991,40(11):1875-1878
用磁转矩和磁化功方法测定Fe40Ni40P12B8和(Fe0.1CO0.5Ni0.4)78Si6B16非晶态合金带在制备态及退火后的磁各向异性常数。结果表明,用磁转矩方法测定的制备态非晶带中的平面磁各向异性常数,其中大部分是不因退火而改变的,这部分的磁各向异性对合金的技术磁化曲线无明显影响 关键词:  相似文献   

11.
金属玻璃形成液体的热力学特性   总被引:2,自引:0,他引:2       下载免费PDF全文
通过分析规则熔体的热力学模型,计算了典型金属玻璃的熔体混合焓ΔHmix和混合熵ΔSmix.结合临界冷却速率,归纳出典型金属玻璃形成液体的热力学特性,并提出基于原子尺寸、元素组成以及元素之间混合焓等参数的形成大块金属玻璃的成分判定方法.结果表明,当ΔHmix<-15 kJ·mol-1且ΔSmix>0.6 J·K-1mol-1时,合金易于形成大块金属玻璃.金属玻璃的临界冷却速率Rc具有明显的尺寸效应,其值与熔体的ΔSmix值呈指数关系,可以用Rc=42.24×104exp(-13.91ΔSmix)+19.66粗略判断.运用该方法成功设计并制备出远离原有Zr基大块金属玻璃形成区域(55at%—65at%Zr)的Zr40Al10Ni15Cu35和四元Fe-B基Fe53Co5Nd12B30大块金属玻璃. 关键词: 混合焓 混合熵 大块金属玻璃 玻璃形成能力  相似文献   

12.
杨理践  刘斌  高松巍  陈立佳 《物理学报》2013,62(8):86201-086201
为研究铁磁材料应力集中区域金属磁记忆信号的产生机理及其变化规律, 采用基于密度泛函理论的第一性原理平面波赝势法, 建立了磁记忆效应的磁力学模型; 计算分析了力与磁记忆自发漏磁信号的定量变化关系. 研究结果表明:力作用导致晶格畸变是磁记忆自发漏磁信号产生的根本原因; 常温下, 磁记忆信号随应力近似线性变化的规律与X70钢管水压爆破实验结果具有很好的一致性. 研究结果有助于金属磁记忆检测机理的研究. 关键词: 金属磁记忆 第一性原理 漏磁信号  相似文献   

13.
王军强  欧阳酥 《物理学报》2017,66(17):176102-176102
玻璃-液体转变现象,简称玻璃转变,被诺贝尔物理学奖获得者安德森教授评为最深奥与重要的凝聚态物理问题之一.金属玻璃作为典型的非晶态物质,具有与液体相似的无序原子结构,因此又称为冻结了的液态金属,是研究玻璃转变问题的理想模型材料.当加热至玻璃转变温度,或者加载到力学屈服点附近时,金属玻璃将会发生流动.由于热或应力导致的流动现象对金属玻璃的应用具有重要意义.本文简要回顾了金属玻璃流变现象,综述了流变扩展弹性模型的研究进展和未来发展趋势.  相似文献   

14.
胡丽娜  赵茜  张春芝 《物理学报》2017,66(17):176403-176403
强脆转变是玻璃形成液体在从低温到高温升温过程中由强性液体转变为脆性液体的现象,反之从高温到低温冷却过程即为脆强转变.由于其意味着液体的结构发生了某种快速、非连续的变化,强脆转变现象成为异常动力学的典型代表.自1999年《Nature》杂志首次报道了水的强-脆转变现象之后,液体的强脆转变现象就作为凝聚态物理和材料科学领域中的前沿和热点问题被广泛关注.越来越多的研究表明,强脆转变现象在金属玻璃形成液体中普遍存在.为阐明金属玻璃强-脆转变现象对于深入理解玻璃转变本质、探讨液固遗传微观结构特征、揭示晶化过程相互竞争规律、提高玻璃形成能力、促进金属玻璃制备和处理工艺标准化等方面的重要意义,综合评述了强脆转变现象在金属玻璃形成液体中的普遍性、特殊性、定量表征、热力学表现以及结构起源等研究领域的最新进展,并指出了该领域今后的发展方向.  相似文献   

15.
马将  杨灿  龚峰  伍晓宇  梁雄 《物理学报》2017,66(17):176404-176404
金属玻璃在其过冷液相区内表现出随着温度升高黏度逐渐降低的特性,因此可以对其进行热塑性加工.该性质颠覆了传统金属的加工成型方式,使得其在远低于传统金属材料加工的温度和应力作用下可以按照人们的要求进行成型.因此,一些具有低玻璃转变温度的金属玻璃又被称作金属塑料.另外,由于金属玻璃是一种无序结构材料,不存在位错、晶界等晶体缺陷,且热膨胀系数小,在热塑性成型中具有优异的尺寸精度,因此被认为是理想的微成型材料,有广阔的应用前景.本文系统介绍了金属玻璃的热塑性成型性质及其应用,从热塑性成型的基本概念出发,阐述了金属玻璃热塑性成型能力的评估指标、热塑性成型技术、热塑性微成型及其理论、热塑性微成型的应用等,对认识金属玻璃的热塑性及扩展其应用有重要的意义.  相似文献   

16.
金属玻璃是由熔态经急冷淬火形成的非晶态金属,具有很高的力学强度和良好的抗腐蚀、耐辐照性能。关于中子、质子、电子和He、Ar离子等分别对金属玻璃的辐照损伤效应已有一些研究报道。托卡马克装置中的等离子体辐照是一种十分复杂的过程,它包括有质子、电子、光子、氘核和少量杂质重离子与中性粒子的混合辐照。本工作研究了某些金属玻璃在托卡马克装置真空器壁处经等离子体辐照以后的结构变化,探索金属玻璃用于托卡马克核聚变装置真空器壁的可能性。  相似文献   

17.
商继祥  赵云波  胡丽娜 《物理学报》2018,67(10):106402-106402
高温金属熔体的黏度是衡量液态金属动力学性质的一个重要指标,是高温金属熔体的基本物理性能之一.熔体的黏度在表征脆性系数、金属玻璃形成能力的大小和液-液相变现象方面起关键性作用.本文在介绍高温金属熔体黏度测量方法的基础上,综合评述了单质、二元和多元合金黏度随温度的变化规律和黏度突变特征,分析了黏度突变研究的物理意义,并指出高温金属熔体黏度今后研究的发展方向。  相似文献   

18.
郭古青  杨亮  张国庆 《物理学报》2011,60(1):16103-016103
应用同步辐射X射线衍射(XRD)和广延X射线吸收精细结构边方法(EXAFS),结合反蒙特卡罗(RMC)拟合、Voronoi分形技术等对Zr50Cu50二元和Zr48Cu45Al7三元金属玻璃材料的微观结构进行了系统的研究.结果表明:ZrCuAl三元金属玻璃中Al原子与Zr原子、Cu原子之间存在强相互作用,表现为键长的明显缩短,导致其微观结构中的Voronoi团簇体积普遍小于Zr50关键词: 大块金属玻璃 原子结构 玻璃形成能力 同步辐射技术  相似文献   

19.
对新型块体金属玻璃Zr48Nb8Cu12Fe8Be24的低温电阻进行了研究,并用理论模型分析了不同温度区间电阻与温度的关系,由此探讨了此类非晶低温下电子散射机理.由实验数据估算了主要散射机理的贡献. 关键词: 金属玻璃 电阻  相似文献   

20.
徐春龙  侯兆阳  刘让苏 《物理学报》2012,61(13):136401-136401
采用分子动力学方法对Ca70Mg30合金快速凝固玻璃形成过程进行了计算机模拟, 深入分析了液-固玻璃转变过程热力学、 动力学和结构特性的转变机理, 对不同方法所确立的玻璃转变温度之间的关系进行了探讨. 结果表明: 本模拟计算所获得的Ca70Mg30金属玻璃的结构因子和玻璃转变温度均与实验结果符合, 而且二十面体局域结构对Ca70Mg30金属玻璃的形成起决定性作用. 由于周围原子形成的瞬时"笼子效应", 过冷液体动力学特性逐渐偏离Arrhenius规律而满足模态耦合理论的幂指数规律. 动力学玻璃转变温度接近于微观结构玻璃转变温度, 但高于热力学玻璃转变温度; 而且它们与理想动力学玻璃转变温度之间满足Odagaki关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号