首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
基于高光谱的番茄叶片过氧化物酶活力测定   总被引:4,自引:0,他引:4  
用高光谱图像技术结合化学计量学方法,实现了番茄叶片中过氧化物酶(POD)活性的快速检测。利用高光谱图像的光谱特征建立预测模型步骤为:采集高光谱图像数据、获取光谱曲线、光谱数据预处理、提取特征波段、建立POD酶活性预测模型。与预处理方法(SG,SNV,MSC,1-Der和2-Der)相比,DOSC预处理对POD酶活性预测效果最好。研究表明:以443,464,413,410,401,402,426和926 nm这八个特征波段的光谱数据建立的DOSC-SPA-PLS模型对POD酶活性预测结果为Rp=0.935 3,RMSEP=37.80 U·g-1。这说明高光谱图像技术测定番茄叶片POD活性具有可行性,且预测结果令人满意,这为抗氧化酶活性和番茄植株生长状况的动态检测提供了新的方法。  相似文献   

2.
选取赣南脐橙果园土壤作为研究对象,探讨在4 000~7 500 cm-1范围内的光谱分析土壤全氮和有机质的可行性。采集的近红外光谱采用多元散射校正、一阶微分、二阶微分、七点平滑等多种预处理对比分析,分别建立了有机质和全氮含量偏最小二乘模型。实验得出全氮预测模型在4 000~7 500 cm-1范围内采用七点平滑(SG)进行预处理模型较为理想,校正集相关系数(rc)为0.802,校正均方根误差(RMSEC)为2.754,预测集相关系数(rp)为0.715,预测均方根误差(RMSEP)为3.077;有机质预测模型在4 000~7 500 cm-1范围内采用标准正态变量变换(SNV)预处理模型较为理想,rc为0.848,RMSEC为0.128,rp为0.790,RMSEP为0.152。研究表明近红外漫反射光谱可快速用于赣南脐橙果园的土壤中全氮和有机质含量的快速检测。  相似文献   

3.
构建了高光谱反射、透射和交互作用成像系统对蓝莓的硬度和弹性模量进行无损检测,并对比不同成像模式的预测准确率。反射高光谱图像采用以大津法为核心的算法进行分割,而透射和交互作用高光谱图像利用基于区域增长的算法进行分割。对提取平均光谱分别进行标准正态变量变换(SNV)和一阶SG卷积平滑(Der),并构建相应光谱的最小二乘支持向量机模型。在全波段模型中,基于SNV预处理反射光(Reflectance-SNV)模型对蓝莓硬度的预测相关系数(Rp)=0.80,相对预测误差(RPD)=1.76;基于SNV预处理透射光(Transmittance-SNV)模型对蓝莓弹性模量的Rp(RPD)=0.78 (1.74)。随机蛙跳算法(Random Frog)可以有效地减少了建模所需的波段数,同时还提高了大部分模型的预测准确率。基于随机蛙跳选择的Der交互作用光(Random Frog-interactance-Der)模型对蓝莓硬度的Rp(RPD)=0.80(1.83),但该模型建模所需的波段数为140;基于随机蛙跳算法的SNV透射光(Random Frog-Transmittance-SNV)模型对蓝莓弹性模量的Rp(RPD)=0.82(1.83),同时该模型建模所需的波段数为20。  相似文献   

4.
采用可见/近红外光谱对丙酯草醚胁迫下大麦叶片过氧化氢酶(catalase, CAT)与过氧化物酶(peroxidase, POD)含量预测进行研究。对500~900 nm光谱采用移动平均法(moving average, MA)11点平滑方法进行预处理。采用蒙特卡罗-偏最小二乘法(monte carlo-partial least squares, MCPLS)方法分别对于CAT与POD的含量预测剔除7个与8个异常样本。基于全部光谱建立了CAT与POD含量预测的PLS,最小二乘支持向量机(least-squares support vector machine, LS-SVM)与极限学习机(extreme learning machine, ELM)模型,ELM模型对CAT含量预测效果最好,建模集相关系数(correlation coefficient of calibration, Rc)为0.916,预测集相关系数Rp为0.786;PLS模型对POD含量预测效果最佳,Rc为0.984,Rp为0.876。采用连续投影算法(successive projections algorithm, SPA)算法分别为CAT与POD预测选择了8个与19个特征波长,基于特征波长建立的PLS,LS-SVM与ELM模型中,ELM模型对CAT与POD含量预测效果均最佳,CAT含量预测的相关系数为Rc=0.928,Rp=0.790;POD含量预测的相关系数Rc=0.965,Rp=0.941。基于全谱与基于特征波长的回归分析模型预测效果相当,且对POD含量的预测效果优于对CAT含量的预测效果,而这需要进一步研究以得到精度和稳定性更高的预测模型。研究结果表明,采用可见/近红外光谱结合化学计量学方法可以实现对除草剂胁迫下大麦叶片CAT与POD含量的预测。  相似文献   

5.
基于漫反射高光谱成像技术的哈密瓜糖度无损检测研究   总被引:4,自引:0,他引:4  
利用高光谱成像系统获得网纹类哈密瓜糖度漫反射光谱信息,选择有效波段500~820 nm进行哈密瓜糖度检测建模回归分析。对比了多元散射信号修正和标准正则变换校正方法,原始光谱、一阶微分、二阶微分光谱预处理方法对建模精度的影响;采用偏最小二乘法、逐步多元线性回归和主成分回归方法对比分析了带皮哈密瓜和去皮哈密瓜糖度检测模型效果。结果表明,对原始光谱经过MSC和一阶微分光谱处理后,采用PLS和SMLR方法均可取得很好的建模效果,应用PLS法检测带皮哈密瓜糖度是可行的,其校正集相关系数(Rc)为0.861,RMSEC为0.627,预测集相关系数(Rp)为0.706,RMSEP为0.873;应用SMLR法检测去皮哈密瓜糖度效果最佳,校正集相关系数(Rc)为0.928,RMSEC为0.458,预测集相关系数(Rp)为0.818,RMSEP为0.727。研究表明,应用高光谱成像技术检测哈密瓜糖度具有可行性。  相似文献   

6.
高光谱成像技术的不同叶位尖椒叶片氮素分布可视化研究   总被引:3,自引:0,他引:3  
为了快速、准确、直观估测尖椒叶片的营养水平和生长状况,利用高光谱成像技术结合化学计量学方法对不同叶位尖椒叶片氮素含量(nitrogen content, NC)的分布进行了可视化研究。按照叶片位置采摘尖椒叶片,并采集高光谱数据,然后测定相应叶片的SPAD和NC。提取出叶片的光谱信息后,采用Random-frog(RF)算法提取特征波段,分别选出5条与10条特征波段。针对选取的特征波段和全波段,分别建立偏最小二乘回归(partial leastsquares regression, PLSR)模型,结果表明采用特征波段建立的PLSR模型性能较好(SPAD:RC=0.970, RCV=0.965, RP=0.934; NC: RC=0.857, RCV=0.806, RP=0.839)。根据预测模型计算尖椒叶片高光谱图像每个像素点的SPAD与NC,从而实现SPAD与NC的可视化分布。事实上叶片的SPAD在一定程度上可以反映含氮量,二者分布图的变化趋势基本一致,验证了可视化结果的正确性。结果表明:运用高光谱成像技术可以实现对不同叶位尖椒叶片氮素分布的可视化研究,这为监测植物的生长状况和养分分布提供理论依据。  相似文献   

7.
小波变换和连续投影算法在火龙果总酸无损检测中的应用   总被引:1,自引:0,他引:1  
应用可见/近红外光谱技术、小波变换(WT)和连续投影算法(SPA),对火龙果总酸含量(TA)进行精确、快速的无损检测,为火龙果内部品质无损检测提供科学依据。利用Maya2000光纤光谱仪采集380~1 099 nm范围的火龙果漫反射光谱数据,通过WT消噪、SPA优选波长和偏最小二乘回归(PLSR)分析方法,建立了火龙果总酸的定量预测模型。试验结果表明:经过WT消噪联合SPA优选波长压缩光谱变量后建立的WT-SPA-PLSR模型,预测精度都高于全谱PLSR模型。由全部样本的原始光谱变量作为输入变量建立PLSR模型的预测相关系数(Rp)为0.851 394, 预测均方根误差(RMSEP)为0.086 848;全部样本的原始光谱数据使用dbN(N=2,3,…,10)小波进行分解消噪,其中消噪效果最优的是db4小波2层分解(db4-2),WT-PLSR模型的Rp为0.915 635,RMSEP为0.066 752,小波变换消噪后的光谱预测模型精度明显提高;原始光谱经过db10-3小波消噪联合SPA算法,从570个光谱变量中优选出530,545,604,626,648,676,685,695,730,897,972,1 016 nm共12个变量作为输入变量,建立WT-SPA-PLSR预测模型,模型的RP为0.882 83, RMSEP为0.077 39。SPA算法适合火龙果TA模型的光谱变量选择,能够有效提取与总酸相关度高的波长变量,增加了预测模型的精度和稳定性。研究结果表明小波变换技术联合连续投影算法的漫反射近红外光谱无损检测火龙果总酸含量具有可行性。  相似文献   

8.
基于高光谱成像技术的油菜叶片SPAD值检测   总被引:11,自引:0,他引:11  
以油菜叶片为研究对象,利用高光谱成像技术,成功建立了叶绿素相对值SPAD值的预测模型。共采集了160个油菜叶片样本在380~1030 nm范围内的高光谱图像。选择500~900 nm之间的平均光谱作为油菜叶片样本的光谱。利用蒙特卡罗最小二乘法(monte carlo partial least squares, MC-PLS)剔除了13个异常样本,基于剩余的147个样本光谱数据与SPAD测量值进行分析,采用了不同的方法建立了多种预测模型,包括:全光谱的偏最小二乘法(partial least squares, PLS)模型,连续投影算法(successive projections algorithm, SPA)选择特征波长的PLS预测模型,“红边”位置(λred)的简单经验估测模型,三种植被指数R710/R760,(R750-R705)/(R750-R705)和R860/(R550*R708)分别建立的简单经验估测模型,以及基于这三种植被指数的PLS预测模型。建模结果显示,全光谱的PLS模型预测效果最为精确,其预测相关系数rp为0.833 9,预测均方根误差RMSEP为1.52。而使用SPA算法选出的8个特征波长所建立的PLS模型其预测结果可达到与全光谱的PLS模型非常接近的水平,而且在保证一定精度的条件下减少了大量运算,节省了运算时间,大幅提高了建模的速度。而基于红边位置和选择的三种植被指数而建立的简单经验估计模型其预测结果虽与基于全光谱的PLS预测模型有一定差距,但模型简单、运算量小,适合用于对精度要求不高的场合,对后续的便携仪器设备开发有一定的指导作用。  相似文献   

9.
对掺入不同含量大豆油和菜籽油的鱼油进行鱼油掺假含量的可见-近红外光谱(Vis-NIR)研究。向3个不同品牌鱼油中分别掺入不同比例的大豆油,另外3个不同品牌中分别掺入不同比例的菜籽油,共获得300个样本。对所采集样本的光谱数据分别采用原始光谱,以及平滑,变量标准化(SNV),多元散射校正(MSC),一阶求导和二阶求导等预处理算法进行处理后,建立偏最小二乘回归(PLSR)模型。基于全波段光谱的鱼油中大豆油和菜籽油掺假含量预测的最优模型分别为全波段PLSR模型和MSC-PLSR模型,其预测相关系数(Rp)分别达到0.938 6和0.959 3。进一步采用连续投影算法(SPA)分析鱼油中大豆油和菜籽油掺假样品的光谱,并分别获得了11个和15个光谱特征波长变量。基于特征变量的PLSR模型的Rp分别为0.941 2和0.932 6。试验研究表明, 可以采用Vis-NIR技术实现对鱼油掺假物含量的检测。  相似文献   

10.
应用便携式近红外光谱分析仪对112个柑桔进行无损检测,运用主成分正交信号校正、加强正交信号校正结合广义回归神经网络的方法分别建立柑桔酸度定量分析模型。结果表明:采用EOSC方法能够使模型具有良好的预测能力并能够防止对数据造成过度校正。EOSC柑桔酸度模型校正集相关系数Rc=0.888 0,预测集相关系数Rp=0.885 6,RMSEP=0.081 65。研究结果表明EOSC预处理方法结合广义回归神经网络可以用于柑桔样本的酸度测定。  相似文献   

11.
高光谱成像技术的油菜叶片氮含量及分布快速检测   总被引:4,自引:0,他引:4  
应用高光谱成像技术实现了油菜苗-花-角果整个生命期叶片氮含量的快速检测和氮素水平分布的可视化。采集三个生长时期共计420个叶片样本的高光谱图像信息(380~1 030 nm),提取图像中感兴趣区域的平均光谱数据,经过不同光谱预处理后,利用连续投影算法(SPA)选择特征波长,将提取的12个特征波长(467,557,665,686,706,752,874,879,886,900,978和995 nm)作为自变量,叶片氮含量作为因变量,分别建立偏最小二乘法(PLS)和最小二乘-支持向量机(LS-SVM)模型。SPA-PLS和SPA-LS-SVM模型对叶片氮含量的预测相关系数RP分别为0.807和0.836,预测均方根误差RMSEP分别为0.387和0.358。高光谱图像中的每一个像素点都有对应的光谱反射值,利用结构简单、更易提取回归系数的SPA-PLS模型,快速计算出12个特征波长下高光谱图像中每个像素点对应的氮含量预测值,结合像素点的空间位置生成氮素浓度的叶面分布图。可视化分布图详细且直观的反应出同一叶片内部或不同叶片之间氮含量的差异。结果表明,应用高光谱成像技术分析整个油菜生长期的叶片氮含量及其可视化分布是可行的。  相似文献   

12.
应用拉曼光谱技术结合化学计量学方法能有效的实现果蔬中农药残留的定性定量分析。本研究借助实验室自主研发的拉曼光谱检测系统,对苹果中溴氰菊酯和啶虫脒的快速无损识别和检测进行了探索。定性分析时将拉曼峰574 和843 cm-1分别作为识别溴氰菊酯和啶虫脒的拉曼指纹,当苹果中的溴氰菊酯和啶虫脒残留的含量分别为0.78和0.15 mg·kg-1时,两种农药的特征峰仍清晰可见。定量分析首先对光谱进行多种预处理(Savitzky-Golay平滑、一阶导、二阶导、基线校准、标准正态变量变换),结合偏最小二乘法分别建立苹果中溴氰菊酯和啶虫脒含量的定量模型。结果表明,采用8次多项式拟合进行基线校准的预处理方法效果最好,对于溴氰菊酯,偏最小二乘模型预测值与气相色谱法测定值的相关系数和预测均方根误差分别为0.94和0.55 mg·kg-1,对于啶虫脒,其偏最小二乘模型的相关系数与预测均方根误差分别为0.85和0.12 mg·kg-1。本研究证实了利用拉曼技术对苹果农残进行无损检测的可行性,使用该方法进行检测时,在光谱测定前不需要进行前处理,光谱测定后样品无任何损伤,该技术实现了果蔬农残的现场检测,可在检测部门、果蔬加工企业、超市、市场等场所得到推广使用,为果蔬品质安全提供了一种无损、快速和环保的检测方法。  相似文献   

13.
LS-SVM的梨可溶性固形物近红外光谱检测的特征波长筛选   总被引:2,自引:0,他引:2  
为提高梨可溶性固形物含量(soluble solids content,SSC)的近红外光谱模型的精度和稳定性,以160个梨样品为实验对象,分别对原始光谱、多元散射校正(MSC)和标准正态变量变换(SNV)处理后的光谱,经无信息变量消除算法(UVE)挑选后,再结合遗传算法(GA)和连续投影算法(SPA),筛选梨可溶性固形物的近红外光谱特征波长。将筛选后的波长作为输入变量建立梨可溶性固形物的最小二乘支持向量机(LS-SVM)模型。结果表明经过SNV-UVE-GA-SPA从全波段3112个波长中筛选出的30个特征波长建立的梨可溶性固形物LS-SVM模型效果最好,该模型的预测集相关系数(Rp)和预测均方根误差(RMSEP)分别为0.956和0.271。该模型简单可靠,预测效果好,能满足梨的可溶性固形物含量的快速检测,为在线检测和便携式设备开发提供了理论基础。  相似文献   

14.
基于近红外光谱法的大佛龙井茶品质评价研究   总被引:4,自引:0,他引:4  
为探索科学、客观的茶叶品质评价方法,以大佛龙井茶为分析对象,采用近红外光谱偏最小二乘法(NIRS-PLS),分别建立了干茶色泽、汤色、香气、滋味、叶底单因子得分及五因子总分、六因子总分共7个定量分析模型。结果表明,在主成分因子数不大于10的情况下,各模型校正相关系数Rc为90.48%~98.43%,校正均方根误差RMSEC为1.14~2.09,预测相关系数Rp为90.00%~96.65%,预测均方根误差RMSEP为1.52~2.84,7个模型校正集和预测集均获得较高的拟合度;其中五因子总分模型预测性能最好(Rp为96.65%、RMSEP为1.52),同时,总分模型精度均高于单因子模型。研究结果表明应用近红外光谱法进行大佛龙井茶的品质评价是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号